StratifiedDataSplitter
- class cocohelper.splitters.stratified.StratifiedDataSplitter[source]
Bases:
ProportionalDataSplitter
Split a COCO dataset into N datasets.
Each split will contain a part of the original dataset samples proportionally to the arguments.
- Parameters:
*proportions – Describe the split proportions for each split.
Method List
_compute_label_ratios
(images_by_label)Computes the ratio of labels within the COCO dataset.
_get_ids
(ch)Get the ids needed for the stratified dataset splitting.
_get_n_samples
(n_images)Get the number of samples for each split.
apply
(coco)Applies the splitter to the given COCOHelper.
Attributes List
Methods Details
- static _compute_label_ratios(images_by_label)[source]
Computes the ratio of labels within the COCO dataset.
- Parameters:
images_by_label (dict) – a dictionary grouping images by their labels.
- Returns:
A dictionary with the ratios of labels in the COCO dataset.
- Return type:
dict
- _get_ids(ch)[source]
Get the ids needed for the stratified dataset splitting.
- Parameters:
ch (COCOHelper) – a COCOHelper with the source COCO dataset.
- Returns:
A list of ids for each subset.
- Return type:
List
- _get_n_samples(n_images)
Get the number of samples for each split. :param n_images: the total number of images in the dataset.
- Returns:
A list of integers with the number of samples for each split.
- apply(coco)
Applies the splitter to the given COCOHelper.
- Parameters:
coco (COCOHelper) – a COCOHelper containing the source dataset to be split.
- Returns:
A list containing the splits of the source COCO dataset.
- Return type:
List[COCOHelper]
Attribute Details
- _abc_impl = <_abc._abc_data object>