COCODataFrame

class cocohelper.dataframe.COCODataFrame[source]

Bases: DataFrame

Extends pandas Dataframe to easy column remapping and join with COCO Datasets.

Parameters:
  • dataframe – the original data.

  • name – the name of the dataframe.

  • col_mappers – a list of Column Mapper objects that can be used to remap other columns of the original dataframe.

Method List

_accum_func(name, func[, axis, skipna])

_add_numeric_operations()

Add the operations to the cls; evaluate the doc strings again

_agg_by_level(name[, axis, level, skipna])

_align_frame(other[, join, axis, level, ...])

_align_series(other[, join, axis, level, ...])

_append(other[, ignore_index, ...])

_arith_method(other, op)

_as_manager(typ[, copy])

Private helper function to create a DataFrame with specific manager.

_box_col_values(values, loc)

Provide boxed values for a column.

_check_inplace_and_allows_duplicate_labels(inplace)

_check_inplace_setting(value)

check whether we allow in-place setting with this type of value

_check_is_chained_assignment_possible()

Check if we are a view, have a cacher, and are of mixed type.

_check_label_or_level_ambiguity(key[, axis])

Check whether key is ambiguous.

_check_setitem_copy([t, force])

param t:

_clear_item_cache()

_clip_with_one_bound(threshold, method, ...)

_clip_with_scalar(lower, upper[, inplace])

_cmp_method(other, op)

_combine_frame(other, func[, fill_value])

_consolidate()

Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray).

_consolidate_inplace()

Consolidate data in place and return None

_construct_axes_dict([axes])

Return an axes dictionary for myself.

_construct_axes_from_arguments(args, kwargs)

Construct and returns axes if supplied in args/kwargs.

_construct_result(result)

Wrap the result of an arithmetic, comparison, or logical operation.

_convert([datetime, numeric, timedelta])

Attempt to infer better dtype for object columns.

_count_level(level[, axis, numeric_only])

_dir_additions()

add the string-like attributes from the info_axis.

_dir_deletions()

Delete unwanted __dir__ for this object.

_dispatch_frame_op(right, func[, axis])

Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation.

_drop_axis(labels, axis[, level, errors, ...])

Drop labels from specified axis.

_drop_labels_or_levels(keys[, axis])

Drop labels and/or levels for the given axis.

_ensure_valid_index(value)

Ensure that if we don't have an index, that we can create one from the passed value.

_find_valid_index(*, how)

Retrieves the index of the first valid value.

_from_arrays(arrays, columns, index[, ...])

Create DataFrame from a list of arrays corresponding to the columns.

_get_agg_axis(axis_num)

Let's be explicit about this.

_get_axis(axis)

_get_axis_name(axis)

_get_axis_number(axis)

_get_axis_resolvers(axis)

_get_block_manager_axis(axis)

Map the axis to the block_manager axis.

_get_bool_data()

_get_cleaned_column_resolvers()

Return the special character free column resolvers of a dataframe.

_get_column_array(i)

Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block)

_get_index_resolvers()

_get_item_cache(item)

Return the cached item, item represents a label indexer.

_get_label_or_level_values(key[, axis])

Return a 1-D array of values associated with key, a label or level from the given axis.

_get_numeric_data()

_get_value(index, col[, takeable])

Quickly retrieve single value at passed column and index.

_getitem_bool_array(key)

_getitem_multilevel(key)

_gotitem(key, ndim[, subset])

Sub-classes to define.

_indexed_same(other)

_info_repr()

True if the repr should show the info view.

_init_mgr(mgr, axes[, dtype, copy])

passed a manager and a axes dict

_inplace_method(other, op)

Wrap arithmetic method to operate inplace.

_invert_join_how(how)

Inverts the join option.

_is_label_or_level_reference(key[, axis])

Test whether a key is a label or level reference for a given axis.

_is_label_reference(key[, axis])

Test whether a key is a label reference for a given axis.

_is_level_reference(key[, axis])

Test whether a key is a level reference for a given axis.

_iset_item(loc, value)

_iset_item_mgr(loc, value[, inplace])

_iset_not_inplace(key, value)

_iter_column_arrays()

Iterate over the arrays of all columns in order.

_ixs(i[, axis])

param i:

_join_compat(other[, on, how, lsuffix, ...])

_logical_func(name, func[, axis, bool_only, ...])

_logical_method(other, op)

_maybe_cache_changed(item, value, inplace)

The object has called back to us saying maybe it has changed.

_maybe_update_cacher([clear, ...])

See if we need to update our parent cacher if clear, then clear our cache.

_min_count_stat_function(name, func[, axis, ...])

_needs_reindex_multi(axes, method, level)

Check if we do need a multi reindex.

_protect_consolidate(f)

Consolidate _mgr -- if the blocks have changed, then clear the cache

_reduce(op, name, *[, axis, skipna, ...])

_reduce_axis1(name, func, skipna)

Special case for _reduce to try to avoid a potentially-expensive transpose.

_reindex_axes(axes, level, limit, tolerance, ...)

_reindex_columns(new_columns, method, copy, ...)

_reindex_index(new_index, method, copy, level)

_reindex_multi(axes, copy, fill_value)

We are guaranteed non-Nones in the axes.

_reindex_with_indexers(reindexers[, ...])

allow_dups indicates an internal call here

_rename([mapper, index, columns, axis, ...])

_replace_columnwise(mapping, inplace, regex)

Dispatch to Series.replace column-wise.

_repr_data_resource_()

Not a real Jupyter special repr method, but we use the same naming convention.

_repr_fits_horizontal_([ignore_width])

Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns.

_repr_fits_vertical_()

Check length against max_rows.

_repr_html_()

Return a html representation for a particular DataFrame.

_repr_latex_()

Returns a LaTeX representation for a particular object.

_reset_cache([key])

Reset cached properties.

_reset_cacher()

_sanitize_column(value)

Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array.

_set_axis(axis, labels)

_set_axis_name(name[, axis, inplace])

Set the name(s) of the axis.

_set_axis_nocheck(labels, axis, inplace, copy)

_set_is_copy(ref[, copy])

_set_item(key, value)

Add series to DataFrame in specified column.

_set_item_frame_value(key, value)

_set_item_mgr(key, value)

_set_value(index, col, value[, takeable])

Put single value at passed column and index.

_setitem_array(key, value)

_setitem_frame(key, value)

_setitem_slice(key, value)

_slice(slobj[, axis])

Construct a slice of this container.

_stat_function(name, func[, axis, skipna, ...])

_stat_function_ddof(name, func[, axis, ...])

_take(indices[, axis, convert_indices])

Internal version of the take allowing specification of additional args.

_take_with_is_copy(indices[, axis])

Internal version of the take method that sets the _is_copy attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning).

_to_dict_of_blocks([copy])

Return a dict of dtype -> Constructor Types that each is a homogeneous dtype.

_update_inplace(result[, verify_is_copy])

Replace self internals with result.

_validate_dtype(dtype)

validate the passed dtype

_where(cond[, other, inplace, axis, level])

Equivalent to public method where, except that other is not applied as a function even if callable.

abs()

Return a Series/DataFrame with absolute numeric value of each element.

add(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator add).

add_prefix(prefix)

Prefix labels with string prefix.

add_suffix(suffix)

Suffix labels with string suffix.

agg([func, axis])

Aggregate using one or more operations over the specified axis.

aggregate([func, axis])

Aggregate using one or more operations over the specified axis.

align(other[, join, axis, level, copy, ...])

Align two objects on their axes with the specified join method.

all([axis, bool_only, skipna, level])

Return whether all elements are True, potentially over an axis.

any(*[, axis, bool_only, skipna, level])

Return whether any element is True, potentially over an axis.

append(other[, ignore_index, ...])

Append rows of other to the end of caller, returning a new object.

apply(func[, axis, raw, result_type, args])

Apply a function along an axis of the DataFrame.

applymap(func[, na_action])

Apply a function to a Dataframe elementwise.

asfreq(freq[, method, how, normalize, ...])

Convert time series to specified frequency.

asof(where[, subset])

Return the last row(s) without any NaNs before where.

assign(**kwargs)

Assign new columns to a DataFrame.

astype(dtype[, copy, errors])

Cast a pandas object to a specified dtype dtype.

at_time(time[, asof, axis])

Select values at particular time of day (e.g., 9:30AM).

auto_reset_index([level, inplace, ...])

Similar to reset_index but, index will drop if index name is None.

backfill(*[, axis, inplace, limit, downcast])

Synonym for DataFrame.fillna() with method='bfill'.

between_time(start_time, end_time[, ...])

Select values between particular times of the day (e.g., 9:00-9:30 AM).

bfill(*[, axis, inplace, limit, downcast])

bool()

Return the bool of a single element Series or DataFrame.

boxplot([column, by, ax, fontsize, rot, ...])

Make a box plot from DataFrame columns.

clip([lower, upper, axis, inplace])

cocojoin(cdf[, how])

Automatically join the dataframe with an input dataframe exploiting the index column names as foreign keys.

combine(other, func[, fill_value, overwrite])

Perform column-wise combine with another DataFrame.

combine_first(other)

Update null elements with value in the same location in other.

compare(other[, align_axis, keep_shape, ...])

Compare to another DataFrame and show the differences.

convert_dtypes([infer_objects, ...])

Convert columns to best possible dtypes using dtypes supporting pd.NA.

copy([deep])

Returns a copy of the COCODataFrame.

corr([method, min_periods, numeric_only])

Compute pairwise correlation of columns, excluding NA/null values.

corrwith(other[, axis, drop, method, ...])

Compute pairwise correlation.

count([axis, level, numeric_only])

Count non-NA cells for each column or row.

cov([min_periods, ddof, numeric_only])

Compute pairwise covariance of columns, excluding NA/null values.

cummax([axis, skipna])

Return cumulative maximum over a DataFrame or Series axis.

cummin([axis, skipna])

Return cumulative minimum over a DataFrame or Series axis.

cumprod([axis, skipna])

Return cumulative product over a DataFrame or Series axis.

cumsum([axis, skipna])

Return cumulative sum over a DataFrame or Series axis.

describe([percentiles, include, exclude, ...])

Generate descriptive statistics.

diff([periods, axis])

First discrete difference of element.

div(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

divide(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

dot(other)

Compute the matrix multiplication between the DataFrame and other.

drop([labels, axis, index, columns, level, ...])

Drop specified labels from rows or columns.

drop_duplicates([subset, keep, inplace, ...])

Return DataFrame with duplicate rows removed.

droplevel(level[, axis])

Return Series/DataFrame with requested index / column level(s) removed.

dropna(*[, axis, how, thresh, subset, inplace])

Remove missing values.

duplicated([subset, keep])

Return boolean Series denoting duplicate rows.

eq(other[, axis, level])

Get Equal to of dataframe and other, element-wise (binary operator eq).

equals(other)

Test whether two objects contain the same elements.

eval(expr, *[, inplace])

Evaluate a string describing operations on DataFrame columns.

ewm([com, span, halflife, alpha, ...])

Provide exponentially weighted (EW) calculations.

expanding([min_periods, center, axis, method])

Provide expanding window calculations.

explode(column[, ignore_index])

Transform each element of a list-like to a row, replicating index values.

ffill(*[, axis, inplace, limit, downcast])

fillna([value, method, axis, inplace, ...])

Fill NA/NaN values using the specified method.

filter([items, like, regex, axis])

Subset the dataframe rows or columns according to the specified index labels.

first(offset)

Select initial periods of time series data based on a date offset.

first_valid_index()

Return index for first non-NA value or None, if no non-NA value is found.

floordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator floordiv).

from_dict(data[, orient, dtype, columns])

Construct DataFrame from dict of array-like or dicts.

from_records(data[, index, exclude, ...])

Convert structured or record ndarray to DataFrame.

ge(other[, axis, level])

Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).

get(key[, default])

Get item from object for given key (ex: DataFrame column).

groupby([by, axis, level, as_index, sort, ...])

Group DataFrame using a mapper or by a Series of columns.

gt(other[, axis, level])

Get Greater than of dataframe and other, element-wise (binary operator gt).

head([n])

Return the first n rows.

hist([column, by, grid, xlabelsize, xrot, ...])

Make a histogram of the DataFrame's columns.

idxmax([axis, skipna, numeric_only])

Return index of first occurrence of maximum over requested axis.

idxmin([axis, skipna, numeric_only])

Return index of first occurrence of minimum over requested axis.

infer_objects()

Attempt to infer better dtypes for object columns.

info([verbose, buf, max_cols, memory_usage, ...])

Print a concise summary of a DataFrame.

insert(loc, column, value[, allow_duplicates])

Insert column into DataFrame at specified location.

interpolate([method, axis, limit, inplace, ...])

isetitem(loc, value)

Set the given value in the column with position 'loc'.

isin(values)

Whether each element in the DataFrame is contained in values.

isna()

Detect missing values.

isnull()

DataFrame.isnull is an alias for DataFrame.isna.

items()

Iterate over (column name, Series) pairs.

iteritems()

Iterate over (column name, Series) pairs.

iterrows()

Iterate over DataFrame rows as (index, Series) pairs.

itertuples([index, name])

Iterate over DataFrame rows as namedtuples.

join(other[, on, how, lsuffix, rsuffix, ...])

Join columns of another DataFrame.

keys()

Get the 'info axis' (see Indexing for more).

kurt([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis.

kurtosis([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis.

last(offset)

Select final periods of time series data based on a date offset.

last_valid_index()

Return index for last non-NA value or None, if no non-NA value is found.

le(other[, axis, level])

Get Less than or equal to of dataframe and other, element-wise (binary operator le).

lookup(row_labels, col_labels)

Label-based "fancy indexing" function for DataFrame.

lt(other[, axis, level])

Get Less than of dataframe and other, element-wise (binary operator lt).

mad([axis, skipna, level])

Return the mean absolute deviation of the values over the requested axis.

map_dataframe_cols(dataframe[, col_mappers])

Applies a mapping to the DataFrame columns according to the provided column mappers.

mask(cond[, other, inplace, axis, level, ...])

max([axis, skipna, level, numeric_only])

Return the maximum of the values over the requested axis.

mean([axis, skipna, level, numeric_only])

Return the mean of the values over the requested axis.

median([axis, skipna, level, numeric_only])

Return the median of the values over the requested axis.

melt([id_vars, value_vars, var_name, ...])

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

memory_usage([index, deep])

Return the memory usage of each column in bytes.

merge(right[, how, on, left_on, right_on, ...])

Merge DataFrame or named Series objects with a database-style join.

min([axis, skipna, level, numeric_only])

Return the minimum of the values over the requested axis.

mod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator mod).

mode([axis, numeric_only, dropna])

Get the mode(s) of each element along the selected axis.

mul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

multiply(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

ne(other[, axis, level])

Get Not equal to of dataframe and other, element-wise (binary operator ne).

nlargest(n, columns[, keep])

Return the first n rows ordered by columns in descending order.

notna()

Detect existing (non-missing) values.

notnull()

DataFrame.notnull is an alias for DataFrame.notna.

nsmallest(n, columns[, keep])

Return the first n rows ordered by columns in ascending order.

nunique([axis, dropna])

Count number of distinct elements in specified axis.

pad(*[, axis, inplace, limit, downcast])

Synonym for DataFrame.fillna() with method='ffill'.

pct_change([periods, fill_method, limit, freq])

Percentage change between the current and a prior element.

pipe(func, *args, **kwargs)

Apply chainable functions that expect Series or DataFrames.

pivot(*[, index, columns, values])

Return reshaped DataFrame organized by given index / column values.

pivot_table([values, index, columns, ...])

Create a spreadsheet-style pivot table as a DataFrame.

pop(item)

Return item and drop from frame.

pow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator pow).

prod([axis, skipna, level, numeric_only, ...])

Return the product of the values over the requested axis.

product([axis, skipna, level, numeric_only, ...])

Return the product of the values over the requested axis.

quantile([q, axis, numeric_only, ...])

Return values at the given quantile over requested axis.

query(expr, *[, inplace])

Query the columns of a DataFrame with a boolean expression.

radd(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator radd).

rank([axis, method, numeric_only, ...])

Compute numerical data ranks (1 through n) along axis.

rdiv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

reindex([labels, index, columns, axis, ...])

Conform Series/DataFrame to new index with optional filling logic.

reindex_like(other[, method, copy, limit, ...])

Return an object with matching indices as other object.

rename([mapper, index, columns, axis, copy, ...])

Alter axes labels.

rename_axis([mapper, inplace])

Set the name of the axis for the index or columns.

reorder_levels(order[, axis])

Rearrange index levels using input order.

replace([to_replace, value, inplace, limit, ...])

Replace values given in to_replace with value.

resample(rule[, axis, closed, label, ...])

Resample time-series data.

reset_index([level, drop, inplace, ...])

Reset the index, or a level of it.

rfloordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).

rmod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator rmod).

rmul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator rmul).

rolling(window[, min_periods, center, ...])

Provide rolling window calculations.

round([decimals])

Round a DataFrame to a variable number of decimal places.

rpow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

rsub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator rsub).

rtruediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

sample([n, frac, replace, weights, ...])

Return a random sample of items from an axis of object.

select_dtypes([include, exclude])

Return a subset of the DataFrame's columns based on the column dtypes.

sem([axis, skipna, level, ddof, numeric_only])

Return unbiased standard error of the mean over requested axis.

set_axis(labels, *[, axis, inplace, copy])

Assign desired index to given axis.

set_flags(*[, copy, allows_duplicate_labels])

Return a new object with updated flags.

set_index(keys[, drop, append, inplace, ...])

Set the DataFrame index using existing columns.

shift([periods, freq, axis, fill_value])

Shift index by desired number of periods with an optional time freq.

skew([axis, skipna, level, numeric_only])

Return unbiased skew over requested axis.

slice_shift([periods, axis])

Equivalent to shift without copying data.

sort_index(*[, axis, level, ascending, ...])

Sort object by labels (along an axis).

sort_values(by, *[, axis, ascending, ...])

Sort by the values along either axis.

squeeze([axis])

Squeeze 1 dimensional axis objects into scalars.

stack([level, dropna])

Stack the prescribed level(s) from columns to index.

std([axis, skipna, level, ddof, numeric_only])

Return sample standard deviation over requested axis.

sub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

subtract(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

sum([axis, skipna, level, numeric_only, ...])

Return the sum of the values over the requested axis.

swapaxes(axis1, axis2[, copy])

Interchange axes and swap values axes appropriately.

swaplevel([i, j, axis])

Swap levels i and j in a MultiIndex.

tail([n])

Return the last n rows.

take(indices[, axis, is_copy])

Return the elements in the given positional indices along an axis.

to_clipboard([excel, sep])

Copy object to the system clipboard.

to_csv([path_or_buf, sep, na_rep, ...])

Write object to a comma-separated values (csv) file.

to_dict([orient, into, include_index])

to_excel(excel_writer[, sheet_name, na_rep, ...])

Write object to an Excel sheet.

to_feather(path, **kwargs)

Write a DataFrame to the binary Feather format.

to_gbq(destination_table[, project_id, ...])

Write a DataFrame to a Google BigQuery table.

to_hdf(path_or_buf, key[, mode, complevel, ...])

Write the contained data to an HDF5 file using HDFStore.

to_html([buf, columns, col_space, header, ...])

Render a DataFrame as an HTML table.

to_json([path_or_buf, orient, date_format, ...])

Convert the object to a JSON string.

to_latex([buf, columns, col_space, header, ...])

Render object to a LaTeX tabular, longtable, or nested table.

to_markdown([buf, mode, index, storage_options])

Print DataFrame in Markdown-friendly format.

to_numpy([dtype, copy, na_value])

Convert the DataFrame to a NumPy array.

to_orc([path, engine, index, engine_kwargs])

Write a DataFrame to the ORC format.

to_parquet([path, engine, compression, ...])

Write a DataFrame to the binary parquet format.

to_period([freq, axis, copy])

Convert DataFrame from DatetimeIndex to PeriodIndex.

to_pickle(path[, compression, protocol, ...])

Pickle (serialize) object to file.

to_records([index, column_dtypes, index_dtypes])

Convert DataFrame to a NumPy record array.

to_sql(name, con[, schema, if_exists, ...])

Write records stored in a DataFrame to a SQL database.

to_stata(path, *[, convert_dates, ...])

Export DataFrame object to Stata dta format.

to_string([buf, columns, col_space, header, ...])

Render a DataFrame to a console-friendly tabular output.

to_timestamp([freq, how, axis, copy])

Cast to DatetimeIndex of timestamps, at beginning of period.

to_xarray()

Return an xarray object from the pandas object.

to_xml([path_or_buffer, index, root_name, ...])

Render a DataFrame to an XML document.

transform(func[, axis])

Call func on self producing a DataFrame with the same axis shape as self.

transpose(*args[, copy])

Transpose index and columns.

truediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

truncate([before, after, axis, copy])

Truncate a Series or DataFrame before and after some index value.

try_remap_col(dataframe, col_mapper[, to_orig])

Attempts to remap a column in a DataFrame.

tshift([periods, freq, axis])

Shift the time index, using the index's frequency if available.

tz_convert(tz[, axis, level, copy])

Convert tz-aware axis to target time zone.

tz_localize(tz[, axis, level, copy, ...])

Localize tz-naive index of a Series or DataFrame to target time zone.

unmap_dataframe_cols(dataframe[, col_mappers])

Unmaps a column in a DataFrame.

unstack([level, fill_value])

Pivot a level of the (necessarily hierarchical) index labels.

update(other[, join, overwrite, ...])

Modify in place using non-NA values from another DataFrame.

value_counts([subset, normalize, sort, ...])

Return a Series containing counts of unique rows in the DataFrame.

var([axis, skipna, level, ddof, numeric_only])

Return unbiased variance over requested axis.

where(cond[, other, inplace, axis, level, ...])

xs(key[, axis, level, drop_level])

Return cross-section from the Series/DataFrame.

Attributes List

T

_AXIS_LEN

_AXIS_NAMES

Deprecated since version 1.1.0.

_AXIS_NUMBERS

Deprecated since version 1.1.0.

_AXIS_ORDERS

_AXIS_TO_AXIS_NUMBER

_HANDLED_TYPES

_accessors

_agg_examples_doc

_agg_summary_and_see_also_doc

_can_fast_transpose

Can we transpose this DataFrame without creating any new array objects.

_constructor

_data

_hidden_attrs

_info_axis

_info_axis_name

_info_axis_number

_internal_names

_internal_names_set

_is_copy

_is_homogeneous_type

Whether all the columns in a DataFrame have the same type.

_is_mixed_type

_is_view

Return boolean indicating if self is view of another array

_metadata

_series

_stat_axis

_stat_axis_name

_stat_axis_number

_typ

_values

Analogue to ._values that may return a 2D ExtensionArray.

at

Access a single value for a row/column label pair.

attrs

Dictionary of global attributes of this dataset.

axes

Return a list representing the axes of the DataFrame.

columns

The column labels of the DataFrame.

data

Returns the DataFrame with columns mapped to the new names.

dtypes

Return the dtypes in the DataFrame.

empty

Indicator whether Series/DataFrame is empty.

flags

Get the properties associated with this pandas object.

iat

Access a single value for a row/column pair by integer position.

iloc

Purely integer-location based indexing for selection by position.

index

The index (row labels) of the DataFrame.

loc

Access a group of rows and columns by label(s) or a boolean array.

name

Get the name assigned to this dataframe.

ndim

Return an int representing the number of axes / array dimensions.

orig_data

Returns the original DataFrame remapping columns to the original names.

shape

Return a tuple representing the dimensionality of the DataFrame.

size

Return an int representing the number of elements in this object.

style

Returns a Styler object.

values

Return a Numpy representation of the DataFrame.

Methods Details

_accum_func(name, func, axis=None, skipna=True, *args, **kwargs)
Parameters:
  • name (str) –

  • axis (Optional[Union[str, int]]) –

  • skipna (bool) –

classmethod _add_numeric_operations()

Add the operations to the cls; evaluate the doc strings again

_agg_by_level(name, axis=0, level=0, skipna=True, **kwargs)
Parameters:
  • name (str) –

  • axis (Union[str, int]) –

  • level (Hashable) –

  • skipna (bool) –

_align_frame(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)
Parameters:

copy (bool) –

_align_series(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)
Parameters:

copy (bool) –

_append(other, ignore_index=False, verify_integrity=False, sort=False)
Parameters:
  • ignore_index (bool) –

  • verify_integrity (bool) –

  • sort (bool) –

Return type:

DataFrame

_arith_method(other, op)
_as_manager(typ, copy=True)

Private helper function to create a DataFrame with specific manager.

Parameters:
  • typ ({"block", "array"}) –

  • copy (bool, default True) – Only controls whether the conversion from Block->ArrayManager copies the 1D arrays (to ensure proper/contiguous memory layout).

  • self (NDFrameT) –

Returns:

New DataFrame using specified manager type. Is not guaranteed to be a copy or not.

Return type:

DataFrame

_box_col_values(values, loc)

Provide boxed values for a column.

Parameters:
  • values (SingleDataManager) –

  • loc (int) –

Return type:

Series

_check_inplace_and_allows_duplicate_labels(inplace)
_check_inplace_setting(value)

check whether we allow in-place setting with this type of value

Return type:

bool

_check_is_chained_assignment_possible()

Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check.

Should be called just near setting a value

Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting.

Return type:

bool

_check_label_or_level_ambiguity(key, axis=0)

Check whether key is ambiguous.

By ambiguous, we mean that it matches both a level of the input axis and a label of the other axis.

Parameters:
  • key (Hashable) – Label or level name.

  • axis (int, default 0) – Axis that levels are associated with (0 for index, 1 for columns).

Raises:

ValueErrorkey is ambiguous:

Return type:

None

_check_setitem_copy(t='setting', force=False)
Parameters:
  • t (str, the type of setting error) –

  • force (bool, default False) – If True, then force showing an error.

  • copy. (validate if we are doing a setitem on a chained) –

  • on (It is technically possible to figure out that we are setting) –

  • words (a copy even WITH a multi-dtyped pandas object. In other) –

  • some

  • ALWAYS (blocks may be views while other are not. Currently _is_view will) –

  • case. (return False for multi-blocks to avoid having to handle this) –

  • DataFrame(np.arange(0 (df =) –

  • 9)

  • columns=['count'])

  • 'b' (df['group'] =) –

  • view (# This technically need not raise SettingWithCopy if both are) –

  • However (# (which is not generally guaranteed but is usually True.) –

:param : :param # this is in general not a good practice and we recommend using .loc.: :param df.iloc[0: :type df.iloc[0: 5][‘group’] = ‘a’

_clear_item_cache()
Return type:

None

_clip_with_one_bound(threshold, method, axis, inplace)
_clip_with_scalar(lower, upper, inplace=False)
Parameters:

inplace (bool) –

_cmp_method(other, op)
_combine_frame(other, func, fill_value=None)
Parameters:

other (DataFrame) –

_consolidate()

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).

Returns:

consolidated

Return type:

same type as caller

_consolidate_inplace()

Consolidate data in place and return None

Return type:

None

_construct_axes_dict(axes=None, **kwargs)

Return an axes dictionary for myself.

classmethod _construct_axes_from_arguments(args, kwargs, require_all=False, sentinel=None)

Construct and returns axes if supplied in args/kwargs.

If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs).

sentinel specifies the default parameter when an axis is not supplied; useful to distinguish when a user explicitly passes None in scenarios where None has special meaning.

Parameters:

require_all (bool) –

_construct_result(result)

Wrap the result of an arithmetic, comparison, or logical operation.

Parameters:

result (DataFrame) –

Return type:

DataFrame

_convert(datetime=False, numeric=False, timedelta=False)

Attempt to infer better dtype for object columns.

Parameters:
  • datetime (bool, default False) – If True, convert to date where possible.

  • numeric (bool, default False) – If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN.

  • timedelta (bool, default False) – If True, convert to timedelta where possible.

  • self (NDFrameT) –

Returns:

converted

Return type:

same as input object

_count_level(level, axis=0, numeric_only=False)
Parameters:
  • level (Hashable) –

  • axis (int) –

  • numeric_only (bool) –

_dir_additions()

add the string-like attributes from the info_axis. If info_axis is a MultiIndex, its first level values are used.

Return type:

set[str]

_dir_deletions()

Delete unwanted __dir__ for this object.

Return type:

set[str]

_dispatch_frame_op(right, func, axis=None)

Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation.

Parameters:
  • right (scalar, Series, or DataFrame) –

  • func (arithmetic or comparison operator) –

  • axis ({None, 0, 1}) –

Return type:

DataFrame

_drop_axis(labels, axis, level=None, errors='raise', only_slice=False)

Drop labels from specified axis. Used in the drop method internally.

Parameters:
  • labels (single label or list-like) –

  • axis (int or axis name) –

  • level (int or level name, default None) – For MultiIndex

  • errors ({'ignore', 'raise'}, default 'raise') – If ‘ignore’, suppress error and existing labels are dropped.

  • only_slice (bool, default False) – Whether indexing along columns should be view-only.

  • self (NDFrameT) –

Return type:

NDFrameT

_drop_labels_or_levels(keys, axis=0)

Drop labels and/or levels for the given axis.

For each key in keys:
  • (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level.

  • (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level.

Parameters:
  • keys (str or list of str) – labels or levels to drop

  • axis (int, default 0) – Axis that levels are associated with (0 for index, 1 for columns)

Returns:

dropped

Return type:

DataFrame

Raises:

ValueError – if any keys match neither a label nor a level

_ensure_valid_index(value)

Ensure that if we don’t have an index, that we can create one from the passed value.

Return type:

None

_find_valid_index(*, how)

Retrieves the index of the first valid value.

Parameters:

how ({'first', 'last'}) – Use this parameter to change between the first or last valid index.

Returns:

idx_first_valid

Return type:

type of index

classmethod _from_arrays(arrays, columns, index, dtype=None, verify_integrity=True)

Create DataFrame from a list of arrays corresponding to the columns.

Parameters:
  • arrays (list-like of arrays) – Each array in the list corresponds to one column, in order.

  • columns (list-like, Index) – The column names for the resulting DataFrame.

  • index (list-like, Index) – The rows labels for the resulting DataFrame.

  • dtype (dtype, optional) – Optional dtype to enforce for all arrays.

  • verify_integrity (bool, default True) – Validate and homogenize all input. If set to False, it is assumed that all elements of arrays are actual arrays how they will be stored in a block (numpy ndarray or ExtensionArray), have the same length as and are aligned with the index, and that columns and index are ensured to be an Index object.

Return type:

DataFrame

_get_agg_axis(axis_num)

Let’s be explicit about this.

Parameters:

axis_num (int) –

Return type:

Index

_get_axis(axis)
Parameters:

axis (Union[str, int]) –

Return type:

Index

classmethod _get_axis_name(axis)
Parameters:

axis (Union[str, int]) –

Return type:

str

classmethod _get_axis_number(axis)
Parameters:

axis (Union[str, int]) –

Return type:

int

_get_axis_resolvers(axis)
Parameters:

axis (str) –

Return type:

dict[str, Series | MultiIndex]

classmethod _get_block_manager_axis(axis)

Map the axis to the block_manager axis.

Parameters:

axis (Union[str, int]) –

Return type:

int

_get_bool_data()
_get_cleaned_column_resolvers()

Return the special character free column resolvers of a dataframe.

Column names with special characters are ‘cleaned up’ so that they can be referred to by backtick quoting. Used in DataFrame.eval().

Return type:

dict[Hashable, Series]

_get_column_array(i)

Get the values of the i’th column (ndarray or ExtensionArray, as stored in the Block)

Warning! The returned array is a view but doesn’t handle Copy-on-Write, so this should be used with caution (for read-only purposes).

Parameters:

i (int) –

Return type:

Union[ExtensionArray, ndarray]

_get_index_resolvers()
Return type:

dict[Hashable, Series | MultiIndex]

_get_item_cache(item)

Return the cached item, item represents a label indexer.

Parameters:

item (Hashable) –

Return type:

Series

_get_label_or_level_values(key, axis=0)

Return a 1-D array of values associated with key, a label or level from the given axis.

Retrieval logic:
  • (axis=0): Return column values if key matches a column label. Otherwise return index level values if key matches an index level.

  • (axis=1): Return row values if key matches an index label. Otherwise return column level values if ‘key’ matches a column level

Parameters:
  • key (Hashable) – Label or level name.

  • axis (int, default 0) – Axis that levels are associated with (0 for index, 1 for columns)

Return type:

np.ndarray or ExtensionArray

Raises:
  • KeyError – if key matches neither a label nor a level

  • ValueError – if key matches multiple labels

  • FutureWarning – if key is ambiguous. This will become an ambiguity error in a future version

_get_numeric_data()
Parameters:

self (NDFrameT) –

Return type:

NDFrameT

_get_value(index, col, takeable=False)

Quickly retrieve single value at passed column and index.

Parameters:
  • index (row label) –

  • col (column label) –

  • takeable (interpret the index/col as indexers, default False) –

Return type:

scalar

Notes

Assumes that both self.index._index_as_unique and self.columns._index_as_unique; Caller is responsible for checking.

_getitem_bool_array(key)
_getitem_multilevel(key)
_gotitem(key, ndim, subset=None)

Sub-classes to define. Return a sliced object.

Parameters:
  • key (string / list of selections) –

  • ndim ({1, 2}) – requested ndim of result

  • subset (object, default None) – subset to act on

Return type:

pandas.core.frame.DataFrame | pandas.core.series.Series

_indexed_same(other)
Return type:

bool

_info_repr()

True if the repr should show the info view.

Return type:

bool

classmethod _init_mgr(mgr, axes, dtype=None, copy=False)

passed a manager and a axes dict

Parameters:
  • mgr (Manager) –

  • dtype (Dtype | None) –

  • copy (bool_t) –

Return type:

Manager

_inplace_method(other, op)

Wrap arithmetic method to operate inplace.

static _invert_join_how(how)[source]

Inverts the join option.

Parameters:

how (str) – input how parameter for the join

Returns:

Inverted (opposite) how parameter for the join

_is_label_or_level_reference(key, axis=0)

Test whether a key is a label or level reference for a given axis.

To be considered either a label or a level reference, key must be a string that:

  • (axis=0): Matches a column label or an index level

  • (axis=1): Matches an index label or a column level

Parameters:
  • key (Hashable) – Potential label or level name

  • axis (int, default 0) – Axis that levels are associated with (0 for index, 1 for columns)

Return type:

bool

_is_label_reference(key, axis=0)

Test whether a key is a label reference for a given axis.

To be considered a label reference, key must be a string that:
  • (axis=0): Matches a column label

  • (axis=1): Matches an index label

Parameters:
  • key (Hashable) – Potential label name, i.e. Index entry.

  • axis (int, default 0) – Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels)

Returns:

is_label

Return type:

bool

_is_level_reference(key, axis=0)

Test whether a key is a level reference for a given axis.

To be considered a level reference, key must be a string that:
  • (axis=0): Matches the name of an index level and does NOT match a column label.

  • (axis=1): Matches the name of a column level and does NOT match an index label.

Parameters:
  • key (Hashable) – Potential level name for the given axis

  • axis (int, default 0) – Axis that levels are associated with (0 for index, 1 for columns)

Returns:

is_level

Return type:

bool

_iset_item(loc, value)
Parameters:

loc (int) –

Return type:

None

_iset_item_mgr(loc, value, inplace=False)
Parameters:
  • loc (int | slice | numpy.ndarray) –

  • inplace (bool) –

Return type:

None

_iset_not_inplace(key, value)
_iter_column_arrays()

Iterate over the arrays of all columns in order. This returns the values as stored in the Block (ndarray or ExtensionArray).

Warning! The returned array is a view but doesn’t handle Copy-on-Write, so this should be used with caution (for read-only purposes).

Return type:

Iterator[Union[ExtensionArray, ndarray]]

_ixs(i, axis=0)
Parameters:
  • i (int) –

  • axis (int) –

Return type:

Series

_join_compat(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)
Parameters:
  • other (Union[DataFrame, Series, Iterable[pandas.core.frame.DataFrame | pandas.core.series.Series]]) –

  • on (Optional[Union[Hashable, Sequence[Hashable]]]) –

  • how (str) –

  • lsuffix (str) –

  • rsuffix (str) –

  • sort (bool) –

  • validate (str | None) –

_logical_func(name, func, axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Parameters:
  • name (str) –

  • axis (Axis) –

  • bool_only (bool_t | None) –

  • skipna (bool_t) –

  • level (Level | None) –

Return type:

Series | bool_t

_logical_method(other, op)
_maybe_cache_changed(item, value, inplace)

The object has called back to us saying maybe it has changed.

Parameters:
  • value (Series) –

  • inplace (bool) –

Return type:

None

_maybe_update_cacher(clear=False, verify_is_copy=True, inplace=False)

See if we need to update our parent cacher if clear, then clear our cache.

Parameters:
  • clear (bool, default False) – Clear the item cache.

  • verify_is_copy (bool, default True) – Provide is_copy checks.

  • inplace (bool) –

Return type:

None

_min_count_stat_function(name, func, axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)
Parameters:
  • name (str) –

  • axis (Optional[Union[str, int]]) –

  • skipna (bool) –

  • level (Optional[Hashable]) –

  • numeric_only (bool | None) –

  • min_count (int) –

_needs_reindex_multi(axes, method, level)

Check if we do need a multi reindex.

Return type:

bool

_protect_consolidate(f)

Consolidate _mgr – if the blocks have changed, then clear the cache

_reduce(op, name, *, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds)
Parameters:
  • name (str) –

  • axis (Union[str, int]) –

  • skipna (bool) –

  • numeric_only (bool | None) –

_reduce_axis1(name, func, skipna)

Special case for _reduce to try to avoid a potentially-expensive transpose.

Apply the reduction block-wise along axis=1 and then reduce the resulting 1D arrays.

Parameters:
  • name (str) –

  • skipna (bool) –

Return type:

Series

_reindex_axes(axes, level, limit, tolerance, method, fill_value, copy)
_reindex_columns(new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None)
Parameters:
  • copy (bool) –

  • level (Hashable) –

_reindex_index(new_index, method, copy, level, fill_value=nan, limit=None, tolerance=None)
Parameters:
  • copy (bool) –

  • level (Hashable) –

_reindex_multi(axes, copy, fill_value)

We are guaranteed non-Nones in the axes.

Parameters:
  • axes (dict[str, pandas.core.indexes.base.Index]) –

  • copy (bool) –

Return type:

DataFrame

_reindex_with_indexers(reindexers, fill_value=None, copy=False, allow_dups=False)

allow_dups indicates an internal call here

Parameters:
  • self (NDFrameT) –

  • copy (bool) –

  • allow_dups (bool) –

Return type:

NDFrameT

_rename(mapper=None, *, index=None, columns=None, axis=None, copy=None, inplace=False, level=None, errors='ignore')
Parameters:
  • self (NDFrameT) –

  • mapper (Optional[Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]]) –

  • index (Optional[Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]]) –

  • columns (Optional[Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]]) –

  • axis (Optional[Union[str, int]]) –

  • copy (bool | None) –

  • inplace (bool) –

  • level (Optional[Hashable]) –

  • errors (str) –

Return type:

Optional[NDFrameT]

_replace_columnwise(mapping, inplace, regex)

Dispatch to Series.replace column-wise.

Parameters:
  • mapping (dict) – of the form {col: (target, value)}

  • inplace (bool) –

  • regex (bool or same types as to_replace in DataFrame.replace) –

Return type:

DataFrame or None

_repr_data_resource_()

Not a real Jupyter special repr method, but we use the same naming convention.

_repr_fits_horizontal_(ignore_width=False)

Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns.

In case of non-interactive session, no boundaries apply.

ignore_width is here so ipynb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573

Parameters:

ignore_width (bool) –

Return type:

bool

_repr_fits_vertical_()

Check length against max_rows.

Return type:

bool

_repr_html_()

Return a html representation for a particular DataFrame.

Mainly for IPython notebook.

Return type:

str | None

_repr_latex_()

Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf).

_reset_cache(key=None)

Reset cached properties. If key is passed, only clears that key.

Parameters:

key (str | None) –

Return type:

None

_reset_cacher()
Return type:

None

_sanitize_column(value)

Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array.

Parameters:

value (scalar, Series, or array-like) –

Return type:

numpy.ndarray or ExtensionArray

_set_axis(axis, labels)
Parameters:
  • axis (int) –

  • labels (AnyArrayLike | list) –

Return type:

None

_set_axis_name(name, axis=0, inplace=False)

Set the name(s) of the axis.

Parameters:
  • name (str or list of str) – Name(s) to set.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to set the label. The value 0 or ‘index’ specifies index, and the value 1 or ‘columns’ specifies columns.

  • inplace (bool, default False) – If True, do operation inplace and return None.

Returns:

The same type as the caller or None if inplace is True.

Return type:

Series, DataFrame, or None

See also

DataFrame.rename

Alter the axis labels of DataFrame.

Series.rename

Alter the index labels or set the index name

of

class:Series.

Index.rename

Set the name of Index or MultiIndex.

Examples

>>> df = pd.DataFrame({"num_legs": [4, 4, 2]},
...                   ["dog", "cat", "monkey"])
>>> df
        num_legs
dog            4
cat            4
monkey         2
>>> df._set_axis_name("animal")
        num_legs
animal
dog            4
cat            4
monkey         2
>>> df.index = pd.MultiIndex.from_product(
...                [["mammal"], ['dog', 'cat', 'monkey']])
>>> df._set_axis_name(["type", "name"])
               num_legs
type   name
mammal dog        4
       cat        4
       monkey     2
_set_axis_nocheck(labels, axis, inplace, copy)
Parameters:
  • axis (Union[str, int]) –

  • inplace (bool) –

  • copy (bool) –

_set_is_copy(ref, copy=True)
Parameters:
  • ref (NDFrame) –

  • copy (bool) –

Return type:

None

_set_item(key, value)

Add series to DataFrame in specified column.

If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown.

Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity.

Return type:

None

_set_item_frame_value(key, value)
Parameters:

value (DataFrame) –

Return type:

None

_set_item_mgr(key, value)
Parameters:

value (Union[ExtensionArray, ndarray]) –

Return type:

None

_set_value(index, col, value, takeable=False)

Put single value at passed column and index.

Parameters:
  • index (Label) – row label

  • col (Label) – column label

  • value (scalar) –

  • takeable (bool, default False) – Sets whether or not index/col interpreted as indexers

Return type:

None

_setitem_array(key, value)
_setitem_frame(key, value)
_setitem_slice(key, value)
Parameters:

key (slice) –

_slice(slobj, axis=0)

Construct a slice of this container.

Slicing with this method is always positional.

Parameters:
  • self (NDFrameT) –

  • slobj (slice) –

Return type:

NDFrameT

_stat_function(name, func, axis=None, skipna=True, level=None, numeric_only=None, **kwargs)
Parameters:
  • name (str) –

  • axis (Union[str, int, None, Literal[<no_default>]]) –

  • skipna (bool) –

  • level (Optional[Hashable]) –

  • numeric_only (bool | None) –

_stat_function_ddof(name, func, axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)
Parameters:
  • name (str) –

  • axis (Axis | None) –

  • skipna (bool_t) –

  • level (Level | None) –

  • ddof (int) –

  • numeric_only (bool_t | None) –

Return type:

Series | float

_take(indices, axis=0, convert_indices=True)

Internal version of the take allowing specification of additional args.

See the docstring of take for full explanation of the parameters.

Parameters:
  • self (NDFrameT) –

  • convert_indices (bool) –

Return type:

NDFrameT

_take_with_is_copy(indices, axis=0)

Internal version of the take method that sets the _is_copy attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning).

See the docstring of take for full explanation of the parameters.

Parameters:

self (NDFrameT) –

Return type:

NDFrameT

_to_dict_of_blocks(copy=True)

Return a dict of dtype -> Constructor Types that each is a homogeneous dtype.

Internal ONLY - only works for BlockManager

Parameters:

copy (bool) –

_update_inplace(result, verify_is_copy=True)

Replace self internals with result.

Parameters:
  • result (same type as self) –

  • verify_is_copy (bool, default True) – Provide is_copy checks.

Return type:

None

classmethod _validate_dtype(dtype)

validate the passed dtype

Return type:

DtypeObj | None

_where(cond, other=_NoDefault.no_default, inplace=False, axis=None, level=None)

Equivalent to public method where, except that other is not applied as a function even if callable. Used in __setitem__.

abs()

Return a Series/DataFrame with absolute numeric value of each element.

This function only applies to elements that are all numeric.

Returns:

Series/DataFrame containing the absolute value of each element.

Return type:

abs

Parameters:

self (NDFrameT) –

See also

numpy.absolute

Calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is \(\sqrt{ a^2 + b^2 }\).

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])
>>> s.abs()
0    1.10
1    2.00
2    3.33
3    4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j])
>>> s.abs()
0    1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])
>>> s.abs()
0   1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({
...     'a': [4, 5, 6, 7],
...     'b': [10, 20, 30, 40],
...     'c': [100, 50, -30, -50]
... })
>>> df
     a    b    c
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50
>>> df.loc[(df.c - 43).abs().argsort()]
     a    b    c
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50
add(other, axis='columns', level=None, fill_value=None)

Get Addition of dataframe and other, element-wise (binary operator add).

Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
add_prefix(prefix)

Prefix labels with string prefix.

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters:
  • prefix (str) – The string to add before each label.

  • self (NDFrameT) –

Returns:

New Series or DataFrame with updated labels.

Return type:

Series or DataFrame

See also

Series.add_suffix

Suffix row labels with string suffix.

DataFrame.add_suffix

Suffix column labels with string suffix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0    1
1    2
2    3
3    4
dtype: int64
>>> s.add_prefix('item_')
item_0    1
item_1    2
item_2    3
item_3    4
dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df
   A  B
0  1  3
1  2  4
2  3  5
3  4  6
>>> df.add_prefix('col_')
     col_A  col_B
0       1       3
1       2       4
2       3       5
3       4       6
add_suffix(suffix)

Suffix labels with string suffix.

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

Parameters:
  • suffix (str) – The string to add after each label.

  • self (NDFrameT) –

Returns:

New Series or DataFrame with updated labels.

Return type:

Series or DataFrame

See also

Series.add_prefix

Prefix row labels with string prefix.

DataFrame.add_prefix

Prefix column labels with string prefix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0    1
1    2
2    3
3    4
dtype: int64
>>> s.add_suffix('_item')
0_item    1
1_item    2
2_item    3
3_item    4
dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df
   A  B
0  1  3
1  2  4
2  3  5
3  4  6
>>> df.add_suffix('_col')
     A_col  B_col
0       1       3
1       2       4
2       3       5
3       4       6
agg(func=None, axis=0, *args, **kwargs)

Aggregate using one or more operations over the specified axis.

Parameters:
  • func (function, str, list or dict) –

    Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.

    Accepted combinations are:

    • function

    • string function name

    • list of functions and/or function names, e.g. [np.sum, 'mean']

    • dict of axis labels -> functions, function names or list of such.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.

  • *args – Positional arguments to pass to func.

  • **kwargs – Keyword arguments to pass to func.

Returns:

  • scalar, Series or DataFrame – The return can be:

    • scalar : when Series.agg is called with single function

    • Series : when DataFrame.agg is called with a single function

    • DataFrame : when DataFrame.agg is called with several functions

    Return scalar, Series or DataFrame.

  • The aggregation operations are always performed over an axis, either the

  • index (default) or the column axis. This behavior is different from

  • numpy aggregation functions (mean, median, prod, sum, std,

  • var), where the default is to compute the aggregation of the flattened

  • array, e.g., numpy.mean(arr_2d) as opposed to

  • numpy.mean(arr_2d, axis=0).

  • agg is an alias for aggregate. Use the alias.

See also

DataFrame.apply

Perform any type of operations.

DataFrame.transform

Perform transformation type operations.

core.groupby.GroupBy

Perform operations over groups.

core.resample.Resampler

Perform operations over resampled bins.

core.window.Rolling

Perform operations over rolling window.

core.window.Expanding

Perform operations over expanding window.

core.window.ExponentialMovingWindow

Perform operation over exponential weighted window.

Notes

agg is an alias for aggregate. Use the alias.

Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See gotchas.udf-mutation for more details.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame([[1, 2, 3],
...                    [4, 5, 6],
...                    [7, 8, 9],
...                    [np.nan, np.nan, np.nan]],
...                   columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0

Aggregate different functions over the columns and rename the index of the resulting DataFrame.

>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
     A    B    C
x  7.0  NaN  NaN
y  NaN  2.0  NaN
z  NaN  NaN  6.0

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64
aggregate(func=None, axis=0, *args, **kwargs)

Aggregate using one or more operations over the specified axis.

Parameters:
  • func (function, str, list or dict) –

    Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.

    Accepted combinations are:

    • function

    • string function name

    • list of functions and/or function names, e.g. [np.sum, 'mean']

    • dict of axis labels -> functions, function names or list of such.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.

  • *args – Positional arguments to pass to func.

  • **kwargs – Keyword arguments to pass to func.

Returns:

  • scalar, Series or DataFrame – The return can be:

    • scalar : when Series.agg is called with single function

    • Series : when DataFrame.agg is called with a single function

    • DataFrame : when DataFrame.agg is called with several functions

    Return scalar, Series or DataFrame.

  • The aggregation operations are always performed over an axis, either the

  • index (default) or the column axis. This behavior is different from

  • numpy aggregation functions (mean, median, prod, sum, std,

  • var), where the default is to compute the aggregation of the flattened

  • array, e.g., numpy.mean(arr_2d) as opposed to

  • numpy.mean(arr_2d, axis=0).

  • agg is an alias for aggregate. Use the alias.

See also

DataFrame.apply

Perform any type of operations.

DataFrame.transform

Perform transformation type operations.

core.groupby.GroupBy

Perform operations over groups.

core.resample.Resampler

Perform operations over resampled bins.

core.window.Rolling

Perform operations over rolling window.

core.window.Expanding

Perform operations over expanding window.

core.window.ExponentialMovingWindow

Perform operation over exponential weighted window.

Notes

agg is an alias for aggregate. Use the alias.

Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See gotchas.udf-mutation for more details.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame([[1, 2, 3],
...                    [4, 5, 6],
...                    [7, 8, 9],
...                    [np.nan, np.nan, np.nan]],
...                   columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0

Aggregate different functions over the columns and rename the index of the resulting DataFrame.

>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
     A    B    C
x  7.0  NaN  NaN
y  NaN  2.0  NaN
z  NaN  NaN  6.0

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64
align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two objects on their axes with the specified join method.

Join method is specified for each axis Index.

Parameters:
  • other (DataFrame or Series) –

  • join ({'outer', 'inner', 'left', 'right'}, default 'outer') –

  • axis (allowed axis of the other object, default None) – Align on index (0), columns (1), or both (None).

  • level (int or level name, default None) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • copy (bool, default True) – Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

  • fill_value (scalar, default np.NaN) – Value to use for missing values. Defaults to NaN, but can be any “compatible” value.

  • method ({'backfill', 'bfill', 'pad', 'ffill', None}, default None) –

    Method to use for filling holes in reindexed Series:

    • pad / ffill: propagate last valid observation forward to next valid.

    • backfill / bfill: use NEXT valid observation to fill gap.

  • limit (int, default None) – If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

  • fill_axis ({0 or 'index', 1 or 'columns'}, default 0) – Filling axis, method and limit.

  • broadcast_axis ({0 or 'index', 1 or 'columns'}, default None) – Broadcast values along this axis, if aligning two objects of different dimensions.

Returns:

(left, right) – Aligned objects.

Return type:

(DataFrame, type of other)

Examples

>>> df = pd.DataFrame(
...     [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2]
... )
>>> other = pd.DataFrame(
...     [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]],
...     columns=["A", "B", "C", "D"],
...     index=[2, 3, 4],
... )
>>> df
   D  B  E  A
1  1  2  3  4
2  6  7  8  9
>>> other
    A    B    C    D
2   10   20   30   40
3   60   70   80   90
4  600  700  800  900

Align on columns:

>>> left, right = df.align(other, join="outer", axis=1)
>>> left
   A  B   C  D  E
1  4  2 NaN  1  3
2  9  7 NaN  6  8
>>> right
    A    B    C    D   E
2   10   20   30   40 NaN
3   60   70   80   90 NaN
4  600  700  800  900 NaN

We can also align on the index:

>>> left, right = df.align(other, join="outer", axis=0)
>>> left
    D    B    E    A
1  1.0  2.0  3.0  4.0
2  6.0  7.0  8.0  9.0
3  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN
>>> right
    A      B      C      D
1    NaN    NaN    NaN    NaN
2   10.0   20.0   30.0   40.0
3   60.0   70.0   80.0   90.0
4  600.0  700.0  800.0  900.0

Finally, the default axis=None will align on both index and columns:

>>> left, right = df.align(other, join="outer", axis=None)
>>> left
     A    B   C    D    E
1  4.0  2.0 NaN  1.0  3.0
2  9.0  7.0 NaN  6.0  8.0
3  NaN  NaN NaN  NaN  NaN
4  NaN  NaN NaN  NaN  NaN
>>> right
       A      B      C      D   E
1    NaN    NaN    NaN    NaN NaN
2   10.0   20.0   30.0   40.0 NaN
3   60.0   70.0   80.0   90.0 NaN
4  600.0  700.0  800.0  900.0 NaN
all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)

Return whether all elements are True, potentially over an axis.

Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).

Parameters:
  • axis ({0 or 'index', 1 or 'columns', None}, default 0) –

    Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.

    • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.

    • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.

    • None : reduce all axes, return a scalar.

  • bool_only (bool, default None) – Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

  • skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • **kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

If level is specified, then, DataFrame is returned; otherwise, Series is returned.

Return type:

Series or DataFrame

See also

Series.all

Return True if all elements are True.

DataFrame.any

Return True if one (or more) elements are True.

Examples

Series

>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([], dtype="float64").all()
True
>>> pd.Series([np.nan]).all()
True
>>> pd.Series([np.nan]).all(skipna=False)
True

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
   col1   col2
0  True   True
1  True  False

Default behaviour checks if values in each column all return True.

>>> df.all()
col1     True
col2    False
dtype: bool

Specify axis='columns' to check if values in each row all return True.

>>> df.all(axis='columns')
0     True
1    False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)
False
any(*, axis=0, bool_only=None, skipna=True, level=None, **kwargs)

Return whether any element is True, potentially over an axis.

Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).

Parameters:
  • axis ({0 or 'index', 1 or 'columns', None}, default 0) –

    Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.

    • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.

    • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.

    • None : reduce all axes, return a scalar.

  • bool_only (bool, default None) – Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

  • skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • **kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

If level is specified, then, DataFrame is returned; otherwise, Series is returned.

Return type:

Series or DataFrame

See also

numpy.any

Numpy version of this method.

Series.any

Return whether any element is True.

Series.all

Return whether all elements are True.

DataFrame.any

Return whether any element is True over requested axis.

DataFrame.all

Return whether all elements are True over requested axis.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([False, False]).any()
False
>>> pd.Series([True, False]).any()
True
>>> pd.Series([], dtype="float64").any()
False
>>> pd.Series([np.nan]).any()
False
>>> pd.Series([np.nan]).any(skipna=False)
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df
   A  B  C
0  1  0  0
1  2  2  0
>>> df.any()
A     True
B     True
C    False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df
       A  B
0   True  1
1  False  2
>>> df.any(axis='columns')
0    True
1    True
dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df
       A  B
0   True  1
1  False  0
>>> df.any(axis='columns')
0    True
1    False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()
Series([], dtype: bool)
append(other, ignore_index=False, verify_integrity=False, sort=False)

Append rows of other to the end of caller, returning a new object.

Deprecated since version 1.4.0: Use concat() instead. For further details see whatsnew_140.deprecations.frame_series_append

Columns in other that are not in the caller are added as new columns.

Parameters:
  • other (DataFrame or Series/dict-like object, or list of these) – The data to append.

  • ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1.

  • verify_integrity (bool, default False) – If True, raise ValueError on creating index with duplicates.

  • sort (bool, default False) –

    Sort columns if the columns of self and other are not aligned.

    Changed in version 1.0.0: Changed to not sort by default.

Returns:

A new DataFrame consisting of the rows of caller and the rows of other.

Return type:

DataFrame

See also

concat

General function to concatenate DataFrame or Series objects.

Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged.

Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once.

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'), index=['x', 'y'])
>>> df
   A  B
x  1  2
y  3  4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'), index=['x', 'y'])
>>> df.append(df2)
   A  B
x  1  2
y  3  4
x  5  6
y  7  8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True)
   A  B
0  1  2
1  3  4
2  5  6
3  7  8

The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources.

Less efficient:

>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
...     df = df.append({'A': i}, ignore_index=True)
>>> df
   A
0  0
1  1
2  2
3  3
4  4

More efficient:

>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
...           ignore_index=True)
   A
0  0
1  1
2  2
3  3
4  4
apply(func, axis=0, raw=False, result_type=None, args=(), **kwargs)

Apply a function along an axis of the DataFrame.

Objects passed to the function are Series objects whose index is either the DataFrame’s index (axis=0) or the DataFrame’s columns (axis=1). By default (result_type=None), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the result_type argument.

Parameters:
  • func (function) – Function to apply to each column or row.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) –

    Axis along which the function is applied:

    • 0 or ‘index’: apply function to each column.

    • 1 or ‘columns’: apply function to each row.

  • raw (bool, default False) –

    Determines if row or column is passed as a Series or ndarray object:

    • False : passes each row or column as a Series to the function.

    • True : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance.

  • result_type ({'expand', 'reduce', 'broadcast', None}, default None) –

    These only act when axis=1 (columns):

    • ’expand’ : list-like results will be turned into columns.

    • ’reduce’ : returns a Series if possible rather than expanding list-like results. This is the opposite of ‘expand’.

    • ’broadcast’ : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained.

    The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns.

  • args (tuple) – Positional arguments to pass to func in addition to the array/series.

  • **kwargs – Additional keyword arguments to pass as keywords arguments to func.

Returns:

Result of applying func along the given axis of the DataFrame.

Return type:

Series or DataFrame

See also

DataFrame.applymap

For elementwise operations.

DataFrame.aggregate

Only perform aggregating type operations.

DataFrame.transform

Only perform transforming type operations.

Notes

Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See gotchas.udf-mutation for more details.

Examples

>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
>>> df
   A  B
0  4  9
1  4  9
2  4  9

Using a numpy universal function (in this case the same as np.sqrt(df)):

>>> df.apply(np.sqrt)
     A    B
0  2.0  3.0
1  2.0  3.0
2  2.0  3.0

Using a reducing function on either axis

>>> df.apply(np.sum, axis=0)
A    12
B    27
dtype: int64
>>> df.apply(np.sum, axis=1)
0    13
1    13
2    13
dtype: int64

Returning a list-like will result in a Series

>>> df.apply(lambda x: [1, 2], axis=1)
0    [1, 2]
1    [1, 2]
2    [1, 2]
dtype: object

Passing result_type='expand' will expand list-like results to columns of a Dataframe

>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
   0  1
0  1  2
1  1  2
2  1  2

Returning a Series inside the function is similar to passing result_type='expand'. The resulting column names will be the Series index.

>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
   foo  bar
0    1    2
1    1    2
2    1    2

Passing result_type='broadcast' will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals.

>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
   A  B
0  1  2
1  1  2
2  1  2
applymap(func, na_action=None, **kwargs)

Apply a function to a Dataframe elementwise.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameters:
  • func (callable) – Python function, returns a single value from a single value.

  • na_action ({None, 'ignore'}, default None) –

    If ‘ignore’, propagate NaN values, without passing them to func.

    New in version 1.2.

  • **kwargs

    Additional keyword arguments to pass as keywords arguments to func.

    New in version 1.3.0.

Returns:

Transformed DataFrame.

Return type:

DataFrame

See also

DataFrame.apply

Apply a function along input axis of DataFrame.

Examples

>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
       0      1
0  1.000  2.120
1  3.356  4.567
>>> df.applymap(lambda x: len(str(x)))
   0  1
0  3  4
1  5  5

Like Series.map, NA values can be ignored:

>>> df_copy = df.copy()
>>> df_copy.iloc[0, 0] = pd.NA
>>> df_copy.applymap(lambda x: len(str(x)), na_action='ignore')
     0  1
0  NaN  4
1  5.0  5

Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.

>>> df.applymap(lambda x: x**2)
           0          1
0   1.000000   4.494400
1  11.262736  20.857489

But it’s better to avoid applymap in that case.

>>> df ** 2
           0          1
0   1.000000   4.494400
1  11.262736  20.857489
asfreq(freq, method=None, how=None, normalize=False, fill_value=None)

Convert time series to specified frequency.

Returns the original data conformed to a new index with the specified frequency.

If the index of this DataFrame is a PeriodIndex, the new index is the result of transforming the original index with PeriodIndex.asfreq (so the original index will map one-to-one to the new index).

Otherwise, the new index will be equivalent to pd.date_range(start, end, freq=freq) where start and end are, respectively, the first and last entries in the original index (see pandas.date_range()). The values corresponding to any timesteps in the new index which were not present in the original index will be null (NaN), unless a method for filling such unknowns is provided (see the method parameter below).

The resample() method is more appropriate if an operation on each group of timesteps (such as an aggregate) is necessary to represent the data at the new frequency.

Parameters:
  • freq (DateOffset or str) – Frequency DateOffset or string.

  • method ({'backfill'/'bfill', 'pad'/'ffill'}, default None) –

    Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):

    • ’pad’ / ‘ffill’: propagate last valid observation forward to next valid

    • ’backfill’ / ‘bfill’: use NEXT valid observation to fill.

  • how ({'start', 'end'}, default end) – For PeriodIndex only (see PeriodIndex.asfreq).

  • normalize (bool, default False) – Whether to reset output index to midnight.

  • fill_value (scalar, optional) – Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present).

Returns:

DataFrame object reindexed to the specified frequency.

Return type:

DataFrame

See also

reindex

Conform DataFrame to new index with optional filling logic.

Notes

To learn more about the frequency strings, please see this link.

Examples

Start by creating a series with 4 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s': series})
>>> df
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:01:00    NaN
2000-01-01 00:02:00    2.0
2000-01-01 00:03:00    3.0

Upsample the series into 30 second bins.

>>> df.asfreq(freq='30S')
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    NaN
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    NaN
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    NaN
2000-01-01 00:03:00    3.0

Upsample again, providing a fill value.

>>> df.asfreq(freq='30S', fill_value=9.0)
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    9.0
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    9.0
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    9.0
2000-01-01 00:03:00    3.0

Upsample again, providing a method.

>>> df.asfreq(freq='30S', method='bfill')
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    NaN
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    2.0
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    3.0
2000-01-01 00:03:00    3.0
asof(where, subset=None)

Return the last row(s) without any NaNs before where.

The last row (for each element in where, if list) without any NaN is taken. In case of a DataFrame, the last row without NaN considering only the subset of columns (if not None)

If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame

Parameters:
  • where (date or array-like of dates) – Date(s) before which the last row(s) are returned.

  • subset (str or array-like of str, default None) – For DataFrame, if not None, only use these columns to check for NaNs.

Returns:

The return can be:

  • scalar : when self is a Series and where is a scalar

  • Series: when self is a Series and where is an array-like, or when self is a DataFrame and where is a scalar

  • DataFrame : when self is a DataFrame and where is an array-like

Return scalar, Series, or DataFrame.

Return type:

scalar, Series, or DataFrame

See also

merge_asof

Perform an asof merge. Similar to left join.

Notes

Dates are assumed to be sorted. Raises if this is not the case.

Examples

A Series and a scalar where.

>>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40])
>>> s
10    1.0
20    2.0
30    NaN
40    4.0
dtype: float64
>>> s.asof(20)
2.0

For a sequence where, a Series is returned. The first value is NaN, because the first element of where is before the first index value.

>>> s.asof([5, 20])
5     NaN
20    2.0
dtype: float64

Missing values are not considered. The following is 2.0, not NaN, even though NaN is at the index location for 30.

>>> s.asof(30)
2.0

Take all columns into consideration

>>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50],
...                    'b': [None, None, None, None, 500]},
...                   index=pd.DatetimeIndex(['2018-02-27 09:01:00',
...                                           '2018-02-27 09:02:00',
...                                           '2018-02-27 09:03:00',
...                                           '2018-02-27 09:04:00',
...                                           '2018-02-27 09:05:00']))
>>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
...                           '2018-02-27 09:04:30']))
                      a   b
2018-02-27 09:03:30 NaN NaN
2018-02-27 09:04:30 NaN NaN

Take a single column into consideration

>>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
...                           '2018-02-27 09:04:30']),
...         subset=['a'])
                      a   b
2018-02-27 09:03:30  30 NaN
2018-02-27 09:04:30  40 NaN
assign(**kwargs)

Assign new columns to a DataFrame.

Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.

Parameters:

**kwargs (dict of {str: callable or Series}) – The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.

Returns:

A new DataFrame with the new columns in addition to all the existing columns.

Return type:

DataFrame

Notes

Assigning multiple columns within the same assign is possible. Later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order.

Examples

>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
...                   index=['Portland', 'Berkeley'])
>>> df
          temp_c
Portland    17.0
Berkeley    25.0

Where the value is a callable, evaluated on df:

>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
          temp_c  temp_f
Portland    17.0    62.6
Berkeley    25.0    77.0

Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence:

>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
          temp_c  temp_f
Portland    17.0    62.6
Berkeley    25.0    77.0

You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign:

>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
...           temp_k=lambda x: (x['temp_f'] +  459.67) * 5 / 9)
          temp_c  temp_f  temp_k
Portland    17.0    62.6  290.15
Berkeley    25.0    77.0  298.15
astype(dtype, copy=True, errors='raise')

Cast a pandas object to a specified dtype dtype.

Parameters:
  • dtype (data type, or dict of column name -> data type) – Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

  • copy (bool, default True) – Return a copy when copy=True (be very careful setting copy=False as changes to values then may propagate to other pandas objects).

  • errors ({'raise', 'ignore'}, default 'raise') –

    Control raising of exceptions on invalid data for provided dtype.

    • raise : allow exceptions to be raised

    • ignore : suppress exceptions. On error return original object.

  • self (NDFrameT) –

Returns:

casted

Return type:

same type as caller

See also

to_datetime

Convert argument to datetime.

to_timedelta

Convert argument to timedelta.

to_numeric

Convert argument to a numeric type.

numpy.ndarray.astype

Cast a numpy array to a specified type.

Notes

Deprecated since version 1.3.0: Using astype to convert from timezone-naive dtype to timezone-aware dtype is deprecated and will raise in a future version. Use Series.dt.tz_localize() instead.

Examples

Create a DataFrame:

>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df.dtypes
col1    int64
col2    int64
dtype: object

Cast all columns to int32:

>>> df.astype('int32').dtypes
col1    int32
col2    int32
dtype: object

Cast col1 to int32 using a dictionary:

>>> df.astype({'col1': 'int32'}).dtypes
col1    int32
col2    int64
dtype: object

Create a series:

>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0    1
1    2
dtype: int32
>>> ser.astype('int64')
0    1
1    2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')
0    1
1    2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> from pandas.api.types import CategoricalDtype
>>> cat_dtype = CategoricalDtype(
...     categories=[2, 1], ordered=True)
>>> ser.astype(cat_dtype)
0    1
1    2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1, 2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1  # note that s1[0] has changed too
0    10
1     2
dtype: int64

Create a series of dates:

>>> ser_date = pd.Series(pd.date_range('20200101', periods=3))
>>> ser_date
0   2020-01-01
1   2020-01-02
2   2020-01-03
dtype: datetime64[ns]
at_time(time, asof=False, axis=None)

Select values at particular time of day (e.g., 9:30AM).

Parameters:
  • time (datetime.time or str) –

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – For Series this parameter is unused and defaults to 0.

  • self (NDFrameT) –

  • asof (bool) –

Return type:

Series or DataFrame

Raises:

TypeError – If the index is not a DatetimeIndex

See also

between_time

Select values between particular times of the day.

first

Select initial periods of time series based on a date offset.

last

Select final periods of time series based on a date offset.

DatetimeIndex.indexer_at_time

Get just the index locations for values at particular time of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
                     A
2018-04-09 00:00:00  1
2018-04-09 12:00:00  2
2018-04-10 00:00:00  3
2018-04-10 12:00:00  4
>>> ts.at_time('12:00')
                     A
2018-04-09 12:00:00  2
2018-04-10 12:00:00  4
auto_reset_index(level=None, inplace=False, col_level=0, col_fill='')[source]

Similar to reset_index but, index will drop if index name is None.

Parameters:
  • level (Optional[Union[Hashable, Sequence[Hashable]]]) – only remove the given levels from the index. Removes all levels by default.

  • inplace (bool) – if to modify the DataFrame rather than creating a new one.

  • col_level (Hashable) – if the columns have multiple levels, determines which level the labels are inserted into. By default, it is inserted into the first level.

  • col_fill (Hashable) – if the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

Returns:

DataFrame or None. Changed row labels or None if inplace=True.

Return type:

DataFrame

backfill(*, axis=None, inplace=False, limit=None, downcast=None)

Synonym for DataFrame.fillna() with method='bfill'.

Returns:

Object with missing values filled or None if inplace=True.

Return type:

Series/DataFrame or None

Parameters:
  • self (NDFrameT) –

  • axis (Union[None, str, int]) –

  • inplace (bool) –

  • limit (None | int) –

  • downcast (dict | None) –

between_time(start_time, end_time, include_start=_NoDefault.no_default, include_end=_NoDefault.no_default, inclusive=None, axis=None)

Select values between particular times of the day (e.g., 9:00-9:30 AM).

By setting start_time to be later than end_time, you can get the times that are not between the two times.

Parameters:
  • start_time (datetime.time or str) – Initial time as a time filter limit.

  • end_time (datetime.time or str) – End time as a time filter limit.

  • include_start (bool, default True) –

    Whether the start time needs to be included in the result.

    Deprecated since version 1.4.0: Arguments include_start and include_end have been deprecated to standardize boundary inputs. Use inclusive instead, to set each bound as closed or open.

  • include_end (bool, default True) –

    Whether the end time needs to be included in the result.

    Deprecated since version 1.4.0: Arguments include_start and include_end have been deprecated to standardize boundary inputs. Use inclusive instead, to set each bound as closed or open.

  • inclusive ({"both", "neither", "left", "right"}, default "both") – Include boundaries; whether to set each bound as closed or open.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Determine range time on index or columns value. For Series this parameter is unused and defaults to 0.

  • self (NDFrameT) –

Returns:

Data from the original object filtered to the specified dates range.

Return type:

Series or DataFrame

Raises:

TypeError – If the index is not a DatetimeIndex

See also

at_time

Select values at a particular time of the day.

first

Select initial periods of time series based on a date offset.

last

Select final periods of time series based on a date offset.

DatetimeIndex.indexer_between_time

Get just the index locations for values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
                     A
2018-04-09 00:00:00  1
2018-04-10 00:20:00  2
2018-04-11 00:40:00  3
2018-04-12 01:00:00  4
>>> ts.between_time('0:15', '0:45')
                     A
2018-04-10 00:20:00  2
2018-04-11 00:40:00  3

You get the times that are not between two times by setting start_time later than end_time:

>>> ts.between_time('0:45', '0:15')
                     A
2018-04-09 00:00:00  1
2018-04-12 01:00:00  4
bfill(*, axis=None, inplace=False, limit=None, downcast=None)
Parameters:
  • axis (Union[None, str, int]) –

  • inplace (bool) –

  • limit (None | int) –

Return type:

pandas.core.frame.DataFrame | None

bool()

Return the bool of a single element Series or DataFrame.

This must be a boolean scalar value, either True or False. It will raise a ValueError if the Series or DataFrame does not have exactly 1 element, or that element is not boolean (integer values 0 and 1 will also raise an exception).

Returns:

The value in the Series or DataFrame.

Return type:

bool

See also

Series.astype

Change the data type of a Series, including to boolean.

DataFrame.astype

Change the data type of a DataFrame, including to boolean.

numpy.bool_

NumPy boolean data type, used by pandas for boolean values.

Examples

The method will only work for single element objects with a boolean value:

>>> pd.Series([True]).bool()
True
>>> pd.Series([False]).bool()
False
>>> pd.DataFrame({'col': [True]}).bool()
True
>>> pd.DataFrame({'col': [False]}).bool()
False
boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs)

Make a box plot from DataFrame columns.

Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots.

For further details see Wikipedia’s entry for boxplot.

Parameters:
  • column (str or list of str, optional) – Column name or list of names, or vector. Can be any valid input to pandas.DataFrame.groupby().

  • by (str or array-like, optional) – Column in the DataFrame to pandas.DataFrame.groupby(). One box-plot will be done per value of columns in by.

  • ax (object of class matplotlib.axes.Axes, optional) – The matplotlib axes to be used by boxplot.

  • fontsize (float or str) – Tick label font size in points or as a string (e.g., large).

  • rot (int or float, default 0) – The rotation angle of labels (in degrees) with respect to the screen coordinate system.

  • grid (bool, default True) – Setting this to True will show the grid.

  • figsize (A tuple (width, height) in inches) – The size of the figure to create in matplotlib.

  • layout (tuple (rows, columns), optional) – For example, (3, 5) will display the subplots using 3 columns and 5 rows, starting from the top-left.

  • return_type ({'axes', 'dict', 'both'} or None, default 'axes') –

    The kind of object to return. The default is axes.

    • ’axes’ returns the matplotlib axes the boxplot is drawn on.

    • ’dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot.

    • ’both’ returns a namedtuple with the axes and dict.

    • when grouping with by, a Series mapping columns to return_type is returned.

      If return_type is None, a NumPy array of axes with the same shape as layout is returned.

  • backend (str, default None) –

    Backend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend.

    New in version 1.0.0.

  • **kwargs – All other plotting keyword arguments to be passed to matplotlib.pyplot.boxplot().

Returns:

See Notes.

Return type:

result

See also

Series.plot.hist

Make a histogram.

matplotlib.pyplot.boxplot

Matplotlib equivalent plot.

Notes

The return type depends on the return_type parameter:

  • ‘axes’ : object of class matplotlib.axes.Axes

  • ‘dict’ : dict of matplotlib.lines.Line2D objects

  • ‘both’ : a namedtuple with structure (ax, lines)

For data grouped with by, return a Series of the above or a numpy array:

  • Series

  • array (for return_type = None)

Use return_type='dict' when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

Examples

Boxplots can be created for every column in the dataframe by df.boxplot() or indicating the columns to be used:

Boxplots of variables distributions grouped by the values of a third variable can be created using the option by. For instance:

A list of strings (i.e. ['X', 'Y']) can be passed to boxplot in order to group the data by combination of the variables in the x-axis:

The layout of boxplot can be adjusted giving a tuple to layout:

Additional formatting can be done to the boxplot, like suppressing the grid (grid=False), rotating the labels in the x-axis (i.e. rot=45) or changing the fontsize (i.e. fontsize=15):

The parameter return_type can be used to select the type of element returned by boxplot. When return_type='axes' is selected, the matplotlib axes on which the boxplot is drawn are returned:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
>>> type(boxplot)
<class 'matplotlib.axes._subplots.AxesSubplot'>

When grouping with by, a Series mapping columns to return_type is returned:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
...                      return_type='axes')
>>> type(boxplot)
<class 'pandas.core.series.Series'>

If return_type is None, a NumPy array of axes with the same shape as layout is returned:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
...                      return_type=None)
>>> type(boxplot)
<class 'numpy.ndarray'>
clip(lower=None, upper=None, *args, axis=None, inplace=False, **kwargs)
Parameters:
  • self (DataFrame) –

  • lower (float | None) –

  • upper (float | None) –

  • axis (Optional[Union[str, int]]) –

  • inplace (bool) –

Return type:

pandas.core.frame.DataFrame | None

cocojoin(cdf, how='left')[source]

Automatically join the dataframe with an input dataframe exploiting the index column names as foreign keys.

If the cdf has a column with the same name of the self dataframe index column, that column will be used as a foreign key and the join is performed. If self dataframe has a column with the same name of the cdf index column, that column will be used as a foreign key and the join is performed.

Parameters:
  • cdf (COCODataFrame) – the COCODataFrame on which execute the join.

  • how (str) – the type of join

Returns:

a new COCODataFrame

Return type:

COCODataFrame

combine(other, func, fill_value=None, overwrite=True)

Perform column-wise combine with another DataFrame.

Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.

Parameters:
  • other (DataFrame) – The DataFrame to merge column-wise.

  • func (function) – Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns.

  • fill_value (scalar value, default None) – The value to fill NaNs with prior to passing any column to the merge func.

  • overwrite (bool, default True) – If True, columns in self that do not exist in other will be overwritten with NaNs.

Returns:

Combination of the provided DataFrames.

Return type:

DataFrame

See also

DataFrame.combine_first

Combine two DataFrame objects and default to non-null values in frame calling the method.

Examples

Combine using a simple function that chooses the smaller column.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
   A  B
0  0  3
1  0  3

Example using a true element-wise combine function.

>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
   A  B
0  1  2
1  0  3

Using fill_value fills Nones prior to passing the column to the merge function.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
   A    B
0  0 -5.0
1  0  4.0

However, if the same element in both dataframes is None, that None is preserved

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
    A    B
0  0 -5.0
1  0  3.0

Example that demonstrates the use of overwrite and behavior when the axis differ between the dataframes.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
     A    B     C
0  NaN  NaN   NaN
1  NaN  3.0 -10.0
2  NaN  3.0   1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
     A    B     C
0  0.0  NaN   NaN
1  0.0  3.0 -10.0
2  NaN  3.0   1.0

Demonstrating the preference of the passed in dataframe.

>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
   A    B   C
0  0.0  NaN NaN
1  0.0  3.0 NaN
2  NaN  3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
     A    B   C
0  0.0  NaN NaN
1  0.0  3.0 1.0
2  NaN  3.0 1.0
combine_first(other)

Update null elements with value in the same location in other.

Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. The resulting dataframe contains the ‘first’ dataframe values and overrides the second one values where both first.loc[index, col] and second.loc[index, col] are not missing values, upon calling first.combine_first(second).

Parameters:

other (DataFrame) – Provided DataFrame to use to fill null values.

Returns:

The result of combining the provided DataFrame with the other object.

Return type:

DataFrame

See also

DataFrame.combine

Perform series-wise operation on two DataFrames using a given function.

Examples

>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine_first(df2)
     A    B
0  1.0  3.0
1  0.0  4.0

Null values still persist if the location of that null value does not exist in other

>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
>>> df1.combine_first(df2)
     A    B    C
0  NaN  4.0  NaN
1  0.0  3.0  1.0
2  NaN  3.0  1.0
compare(other, align_axis=1, keep_shape=False, keep_equal=False, result_names=('self', 'other'))

Compare to another DataFrame and show the differences.

New in version 1.1.0.

Parameters:
  • other (DataFrame) – Object to compare with.

  • align_axis ({0 or 'index', 1 or 'columns'}, default 1) –

    Determine which axis to align the comparison on.

    • 0, or ‘index’Resulting differences are stacked vertically

      with rows drawn alternately from self and other.

    • 1, or ‘columns’Resulting differences are aligned horizontally

      with columns drawn alternately from self and other.

  • keep_shape (bool, default False) – If true, all rows and columns are kept. Otherwise, only the ones with different values are kept.

  • keep_equal (bool, default False) – If true, the result keeps values that are equal. Otherwise, equal values are shown as NaNs.

  • result_names (tuple, default ('self', 'other')) –

    Set the dataframes names in the comparison.

    New in version 1.5.0.

Returns:

DataFrame that shows the differences stacked side by side.

The resulting index will be a MultiIndex with ‘self’ and ‘other’ stacked alternately at the inner level.

Return type:

DataFrame

Raises:

ValueError – When the two DataFrames don’t have identical labels or shape.

See also

Series.compare

Compare with another Series and show differences.

DataFrame.equals

Test whether two objects contain the same elements.

Notes

Matching NaNs will not appear as a difference.

Can only compare identically-labeled (i.e. same shape, identical row and column labels) DataFrames

Examples

>>> df = pd.DataFrame(
...     {
...         "col1": ["a", "a", "b", "b", "a"],
...         "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
...         "col3": [1.0, 2.0, 3.0, 4.0, 5.0]
...     },
...     columns=["col1", "col2", "col3"],
... )
>>> df
  col1  col2  col3
0    a   1.0   1.0
1    a   2.0   2.0
2    b   3.0   3.0
3    b   NaN   4.0
4    a   5.0   5.0
>>> df2 = df.copy()
>>> df2.loc[0, 'col1'] = 'c'
>>> df2.loc[2, 'col3'] = 4.0
>>> df2
  col1  col2  col3
0    c   1.0   1.0
1    a   2.0   2.0
2    b   3.0   4.0
3    b   NaN   4.0
4    a   5.0   5.0

Align the differences on columns

>>> df.compare(df2)
  col1       col3
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

Assign result_names

>>> df.compare(df2, result_names=("left", "right"))
  col1       col3
  left right left right
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

Stack the differences on rows

>>> df.compare(df2, align_axis=0)
        col1  col3
0 self     a   NaN
  other    c   NaN
2 self   NaN   3.0
  other  NaN   4.0

Keep the equal values

>>> df.compare(df2, keep_equal=True)
  col1       col3
  self other self other
0    a     c  1.0   1.0
2    b     b  3.0   4.0

Keep all original rows and columns

>>> df.compare(df2, keep_shape=True)
  col1       col2       col3
  self other self other self other
0    a     c  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN  NaN   NaN
2  NaN   NaN  NaN   NaN  3.0   4.0
3  NaN   NaN  NaN   NaN  NaN   NaN
4  NaN   NaN  NaN   NaN  NaN   NaN

Keep all original rows and columns and also all original values

>>> df.compare(df2, keep_shape=True, keep_equal=True)
  col1       col2       col3
  self other self other self other
0    a     c  1.0   1.0  1.0   1.0
1    a     a  2.0   2.0  2.0   2.0
2    b     b  3.0   3.0  3.0   4.0
3    b     b  NaN   NaN  4.0   4.0
4    a     a  5.0   5.0  5.0   5.0
convert_dtypes(infer_objects=True, convert_string=True, convert_integer=True, convert_boolean=True, convert_floating=True)

Convert columns to best possible dtypes using dtypes supporting pd.NA.

New in version 1.0.0.

Parameters:
  • infer_objects (bool, default True) – Whether object dtypes should be converted to the best possible types.

  • convert_string (bool, default True) – Whether object dtypes should be converted to StringDtype().

  • convert_integer (bool, default True) – Whether, if possible, conversion can be done to integer extension types.

  • convert_boolean (bool, defaults True) – Whether object dtypes should be converted to BooleanDtypes().

  • convert_floating (bool, defaults True) –

    Whether, if possible, conversion can be done to floating extension types. If convert_integer is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers.

    New in version 1.2.0.

  • self (NDFrameT) –

Returns:

Copy of input object with new dtype.

Return type:

Series or DataFrame

See also

infer_objects

Infer dtypes of objects.

to_datetime

Convert argument to datetime.

to_timedelta

Convert argument to timedelta.

to_numeric

Convert argument to a numeric type.

Notes

By default, convert_dtypes will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support pd.NA. By using the options convert_string, convert_integer, convert_boolean and convert_boolean, it is possible to turn off individual conversions to StringDtype, the integer extension types, BooleanDtype or floating extension types, respectively.

For object-dtyped columns, if infer_objects is True, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to StringDtype, BooleanDtype or an appropriate integer or floating extension type, otherwise leave as object.

If the dtype is integer, convert to an appropriate integer extension type.

If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. Otherwise, convert to an appropriate floating extension type.

Changed in version 1.2: Starting with pandas 1.2, this method also converts float columns to the nullable floating extension type.

In the future, as new dtypes are added that support pd.NA, the results of this method will change to support those new dtypes.

Examples

>>> df = pd.DataFrame(
...     {
...         "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
...         "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")),
...         "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
...         "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")),
...         "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")),
...         "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
...     }
... )

Start with a DataFrame with default dtypes.

>>> df
   a  b      c    d     e      f
0  1  x   True    h  10.0    NaN
1  2  y  False    i   NaN  100.5
2  3  z    NaN  NaN  20.0  200.0
>>> df.dtypes
a      int32
b     object
c     object
d     object
e    float64
f    float64
dtype: object

Convert the DataFrame to use best possible dtypes.

>>> dfn = df.convert_dtypes()
>>> dfn
   a  b      c     d     e      f
0  1  x   True     h    10   <NA>
1  2  y  False     i  <NA>  100.5
2  3  z   <NA>  <NA>    20  200.0
>>> dfn.dtypes
a      Int32
b     string
c    boolean
d     string
e      Int64
f    Float64
dtype: object

Start with a Series of strings and missing data represented by np.nan.

>>> s = pd.Series(["a", "b", np.nan])
>>> s
0      a
1      b
2    NaN
dtype: object

Obtain a Series with dtype StringDtype.

>>> s.convert_dtypes()
0       a
1       b
2    <NA>
dtype: string
copy(deep=True)[source]

Returns a copy of the COCODataFrame. The copy is deep by default.

Parameters:

deep (bool) – if True, the copy is deep.

Returns:

A copy of the COCODataFrame.

Return type:

COCODataFrame

corr(method='pearson', min_periods=1, numeric_only=_NoDefault.no_default)

Compute pairwise correlation of columns, excluding NA/null values.

Parameters:
  • method ({'pearson', 'kendall', 'spearman'} or callable) –

    Method of correlation:

    • pearson : standard correlation coefficient

    • kendall : Kendall Tau correlation coefficient

    • spearman : Spearman rank correlation

    • callable: callable with input two 1d ndarrays

      and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior.

  • min_periods (int, optional) – Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation.

  • numeric_only (bool, default True) –

    Include only float, int or boolean data.

    New in version 1.5.0.

    Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas.

Returns:

Correlation matrix.

Return type:

DataFrame

See also

DataFrame.corrwith

Compute pairwise correlation with another DataFrame or Series.

Series.corr

Compute the correlation between two Series.

Notes

Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.

Examples

>>> def histogram_intersection(a, b):
...     v = np.minimum(a, b).sum().round(decimals=1)
...     return v
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
...                   columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection)
      dogs  cats
dogs   1.0   0.3
cats   0.3   1.0
>>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)],
...                   columns=['dogs', 'cats'])
>>> df.corr(min_periods=3)
      dogs  cats
dogs   1.0   NaN
cats   NaN   1.0
corrwith(other, axis=0, drop=False, method='pearson', numeric_only=_NoDefault.no_default)

Compute pairwise correlation.

Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.

Parameters:
  • other (DataFrame, Series) – Object with which to compute correlations.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise.

  • drop (bool, default False) – Drop missing indices from result.

  • method ({'pearson', 'kendall', 'spearman'} or callable) –

    Method of correlation:

    • pearson : standard correlation coefficient

    • kendall : Kendall Tau correlation coefficient

    • spearman : Spearman rank correlation

    • callable: callable with input two 1d ndarrays

      and returning a float.

  • numeric_only (bool, default True) –

    Include only float, int or boolean data.

    New in version 1.5.0.

    Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas.

Returns:

Pairwise correlations.

Return type:

Series

See also

DataFrame.corr

Compute pairwise correlation of columns.

Examples

>>> index = ["a", "b", "c", "d", "e"]
>>> columns = ["one", "two", "three", "four"]
>>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns)
>>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns)
>>> df1.corrwith(df2)
one      1.0
two      1.0
three    1.0
four     1.0
dtype: float64
>>> df2.corrwith(df1, axis=1)
a    1.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
count(axis=0, level=None, numeric_only=False)

Count non-NA cells for each column or row.

The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.

  • level (int or str, optional) – If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.

  • numeric_only (bool, default False) – Include only float, int or boolean data.

Returns:

For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.

Return type:

Series or DataFrame

See also

Series.count

Number of non-NA elements in a Series.

DataFrame.value_counts

Count unique combinations of columns.

DataFrame.shape

Number of DataFrame rows and columns (including NA elements).

DataFrame.isna

Boolean same-sized DataFrame showing places of NA elements.

Examples

Constructing DataFrame from a dictionary:

>>> df = pd.DataFrame({"Person":
...                    ["John", "Myla", "Lewis", "John", "Myla"],
...                    "Age": [24., np.nan, 21., 33, 26],
...                    "Single": [False, True, True, True, False]})
>>> df
   Person   Age  Single
0    John  24.0   False
1    Myla   NaN    True
2   Lewis  21.0    True
3    John  33.0    True
4    Myla  26.0   False

Notice the uncounted NA values:

>>> df.count()
Person    5
Age       4
Single    5
dtype: int64

Counts for each row:

>>> df.count(axis='columns')
0    3
1    2
2    3
3    3
4    3
dtype: int64
cov(min_periods=None, ddof=1, numeric_only=_NoDefault.no_default)

Compute pairwise covariance of columns, excluding NA/null values.

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between different measures across time.

Parameters:
  • min_periods (int, optional) – Minimum number of observations required per pair of columns to have a valid result.

  • ddof (int, default 1) –

    Delta degrees of freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

    New in version 1.1.0.

  • numeric_only (bool, default True) –

    Include only float, int or boolean data.

    New in version 1.5.0.

    Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas.

Returns:

The covariance matrix of the series of the DataFrame.

Return type:

DataFrame

See also

Series.cov

Compute covariance with another Series.

core.window.ewm.ExponentialMovingWindow.cov

Exponential weighted sample covariance.

core.window.expanding.Expanding.cov

Expanding sample covariance.

core.window.rolling.Rolling.cov

Rolling sample covariance.

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-ddof.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series.

However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
...                   columns=['dogs', 'cats'])
>>> df.cov()
          dogs      cats
dogs  0.666667 -1.000000
cats -1.000000  1.666667
>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(1000, 5),
...                   columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov()
          a         b         c         d         e
a  0.998438 -0.020161  0.059277 -0.008943  0.014144
b -0.020161  1.059352 -0.008543 -0.024738  0.009826
c  0.059277 -0.008543  1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486  0.921297 -0.013692
e  0.014144  0.009826 -0.000271 -0.013692  0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result:

>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(20, 3),
...                   columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan
>>> df.loc[df.index[5:10], 'b'] = np.nan
>>> df.cov(min_periods=12)
          a         b         c
a  0.316741       NaN -0.150812
b       NaN  1.248003  0.191417
c -0.150812  0.191417  0.895202
cummax(axis=None, skipna=True, *args, **kwargs)

Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • *args – Additional keywords have no effect but might be accepted for compatibility with NumPy.

  • **kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

Return cumulative maximum of Series or DataFrame.

Return type:

Series or DataFrame

See also

core.window.expanding.Expanding.max

Similar functionality but ignores NaN values.

DataFrame.max

Return the maximum over DataFrame axis.

DataFrame.cummax

Return cumulative maximum over DataFrame axis.

DataFrame.cummin

Return cumulative minimum over DataFrame axis.

DataFrame.cumsum

Return cumulative sum over DataFrame axis.

DataFrame.cumprod

Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()
0    2.0
1    NaN
2    5.0
3    5.0
4    5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummax()
     A    B
0  2.0  1.0
1  3.0  NaN
2  3.0  1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  1.0
cummin(axis=None, skipna=True, *args, **kwargs)

Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • *args – Additional keywords have no effect but might be accepted for compatibility with NumPy.

  • **kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

Return cumulative minimum of Series or DataFrame.

Return type:

Series or DataFrame

See also

core.window.expanding.Expanding.min

Similar functionality but ignores NaN values.

DataFrame.min

Return the minimum over DataFrame axis.

DataFrame.cummax

Return cumulative maximum over DataFrame axis.

DataFrame.cummin

Return cumulative minimum over DataFrame axis.

DataFrame.cumsum

Return cumulative sum over DataFrame axis.

DataFrame.cumprod

Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()
0    2.0
1    NaN
2    2.0
3   -1.0
4   -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummin()
     A    B
0  2.0  1.0
1  2.0  NaN
2  1.0  0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0
cumprod(axis=None, skipna=True, *args, **kwargs)

Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • *args – Additional keywords have no effect but might be accepted for compatibility with NumPy.

  • **kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

Return cumulative product of Series or DataFrame.

Return type:

Series or DataFrame

See also

core.window.expanding.Expanding.prod

Similar functionality but ignores NaN values.

DataFrame.prod

Return the product over DataFrame axis.

DataFrame.cummax

Return cumulative maximum over DataFrame axis.

DataFrame.cummin

Return cumulative minimum over DataFrame axis.

DataFrame.cumsum

Return cumulative sum over DataFrame axis.

DataFrame.cumprod

Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()
0     2.0
1     NaN
2    10.0
3   -10.0
4    -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumprod()
     A    B
0  2.0  1.0
1  6.0  NaN
2  6.0  0.0

To iterate over columns and find the product in each row, use axis=1

>>> df.cumprod(axis=1)
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  0.0
cumsum(axis=None, skipna=True, *args, **kwargs)

Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • *args – Additional keywords have no effect but might be accepted for compatibility with NumPy.

  • **kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

Return cumulative sum of Series or DataFrame.

Return type:

Series or DataFrame

See also

core.window.expanding.Expanding.sum

Similar functionality but ignores NaN values.

DataFrame.sum

Return the sum over DataFrame axis.

DataFrame.cummax

Return cumulative maximum over DataFrame axis.

DataFrame.cummin

Return cumulative minimum over DataFrame axis.

DataFrame.cumsum

Return cumulative sum over DataFrame axis.

DataFrame.cumprod

Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()
0    2.0
1    NaN
2    7.0
3    6.0
4    6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumsum()
     A    B
0  2.0  1.0
1  5.0  NaN
2  6.0  1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1)
     A    B
0  2.0  3.0
1  3.0  NaN
2  1.0  1.0
describe(percentiles=None, include=None, exclude=None, datetime_is_numeric=False)

Generate descriptive statistics.

Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters:
  • percentiles (list-like of numbers, optional) – The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

  • include ('all', list-like of dtypes or None (default), optional) –

    A white list of data types to include in the result. Ignored for Series. Here are the options:

    • ’all’ : All columns of the input will be included in the output.

    • A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to object columns submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O'])). To select pandas categorical columns, use 'category'

    • None (default) : The result will include all numeric columns.

  • exclude (list-like of dtypes or None (default), optional,) –

    A black list of data types to omit from the result. Ignored for Series. Here are the options:

    • A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit numpy.number. To exclude object columns submit the data type numpy.object. Strings can also be used in the style of select_dtypes (e.g. df.describe(exclude=['O'])). To exclude pandas categorical columns, use 'category'

    • None (default) : The result will exclude nothing.

  • datetime_is_numeric (bool, default False) –

    Whether to treat datetime dtypes as numeric. This affects statistics calculated for the column. For DataFrame input, this also controls whether datetime columns are included by default.

    New in version 1.1.0.

  • self (NDFrameT) –

Returns:

Summary statistics of the Series or Dataframe provided.

Return type:

Series or DataFrame

See also

DataFrame.count

Count number of non-NA/null observations.

DataFrame.max

Maximum of the values in the object.

DataFrame.min

Minimum of the values in the object.

DataFrame.mean

Mean of the values.

DataFrame.std

Standard deviation of the observations.

DataFrame.select_dtypes

Subset of a DataFrame including/excluding columns based on their dtype.

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0
dtype: float64

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count     4
unique    3
top       a
freq      2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([
...   np.datetime64("2000-01-01"),
...   np.datetime64("2010-01-01"),
...   np.datetime64("2010-01-01")
... ])
>>> s.describe(datetime_is_numeric=True)
count                      3
mean     2006-09-01 08:00:00
min      2000-01-01 00:00:00
25%      2004-12-31 12:00:00
50%      2010-01-01 00:00:00
75%      2010-01-01 00:00:00
max      2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']),
...                    'numeric': [1, 2, 3],
...                    'object': ['a', 'b', 'c']
...                   })
>>> df.describe()
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')  
       categorical  numeric object
count            3      3.0      3
unique           3      NaN      3
top              f      NaN      a
freq             1      NaN      1
mean           NaN      2.0    NaN
std            NaN      1.0    NaN
min            NaN      1.0    NaN
25%            NaN      1.5    NaN
50%            NaN      2.0    NaN
75%            NaN      2.5    NaN
max            NaN      3.0    NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[object])  
       object
count       3
unique      3
top         a
freq        1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])
       categorical
count            3
unique           3
top              d
freq             1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])  
       categorical object
count            3      3
unique           3      3
top              f      a
freq             1      1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[object])  
       categorical  numeric
count            3      3.0
unique           3      NaN
top              f      NaN
freq             1      NaN
mean           NaN      2.0
std            NaN      1.0
min            NaN      1.0
25%            NaN      1.5
50%            NaN      2.0
75%            NaN      2.5
max            NaN      3.0
diff(periods=1, axis=0)

First discrete difference of element.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row).

Parameters:
  • periods (int, default 1) – Periods to shift for calculating difference, accepts negative values.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Take difference over rows (0) or columns (1).

Returns:

First differences of the Series.

Return type:

DataFrame

See also

DataFrame.pct_change

Percent change over given number of periods.

DataFrame.shift

Shift index by desired number of periods with an optional time freq.

Series.diff

First discrete difference of object.

Notes

For boolean dtypes, this uses operator.xor() rather than operator.sub(). The result is calculated according to current dtype in DataFrame, however dtype of the result is always float64.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
...                    'b': [1, 1, 2, 3, 5, 8],
...                    'c': [1, 4, 9, 16, 25, 36]})
>>> df
   a  b   c
0  1  1   1
1  2  1   4
2  3  2   9
3  4  3  16
4  5  5  25
5  6  8  36
>>> df.diff()
     a    b     c
0  NaN  NaN   NaN
1  1.0  0.0   3.0
2  1.0  1.0   5.0
3  1.0  1.0   7.0
4  1.0  2.0   9.0
5  1.0  3.0  11.0

Difference with previous column

>>> df.diff(axis=1)
    a  b   c
0 NaN  0   0
1 NaN -1   3
2 NaN -1   7
3 NaN -1  13
4 NaN  0  20
5 NaN  2  28

Difference with 3rd previous row

>>> df.diff(periods=3)
     a    b     c
0  NaN  NaN   NaN
1  NaN  NaN   NaN
2  NaN  NaN   NaN
3  3.0  2.0  15.0
4  3.0  4.0  21.0
5  3.0  6.0  27.0

Difference with following row

>>> df.diff(periods=-1)
     a    b     c
0 -1.0  0.0  -3.0
1 -1.0 -1.0  -5.0
2 -1.0 -1.0  -7.0
3 -1.0 -2.0  -9.0
4 -1.0 -3.0 -11.0
5  NaN  NaN   NaN

Overflow in input dtype

>>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8)
>>> df.diff()
       a
0    NaN
1  255.0
div(other, axis='columns', level=None, fill_value=None)

Get Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
divide(other, axis='columns', level=None, fill_value=None)

Get Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
dot(other)

Compute the matrix multiplication between the DataFrame and other.

This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array.

It can also be called using self @ other in Python >= 3.5.

Parameters:

other (Series, DataFrame or array-like) – The other object to compute the matrix product with.

Returns:

If other is a Series, return the matrix product between self and other as a Series. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array.

Return type:

Series or DataFrame

See also

Series.dot

Similar method for Series.

Notes

The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication.

The dot method for Series computes the inner product, instead of the matrix product here.

Examples

Here we multiply a DataFrame with a Series.

>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
>>> s = pd.Series([1, 1, 2, 1])
>>> df.dot(s)
0    -4
1     5
dtype: int64

Here we multiply a DataFrame with another DataFrame.

>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(other)
    0   1
0   1   4
1   2   2

Note that the dot method give the same result as @

>>> df @ other
    0   1
0   1   4
1   2   2

The dot method works also if other is an np.array.

>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(arr)
    0   1
0   1   4
1   2   2

Note how shuffling of the objects does not change the result.

>>> s2 = s.reindex([1, 0, 2, 3])
>>> df.dot(s2)
0    -4
1     5
dtype: int64
drop(labels=None, *, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

Drop specified labels from rows or columns.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. See the user guide <advanced.shown_levels> for more information about the now unused levels.

Parameters:
  • labels (single label or list-like) – Index or column labels to drop. A tuple will be used as a single label and not treated as a list-like.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

  • index (single label or list-like) – Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).

  • columns (single label or list-like) – Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

  • level (int or level name, optional) – For MultiIndex, level from which the labels will be removed.

  • inplace (bool, default False) – If False, return a copy. Otherwise, do operation inplace and return None.

  • errors ({'ignore', 'raise'}, default 'raise') – If ‘ignore’, suppress error and only existing labels are dropped.

Returns:

DataFrame without the removed index or column labels or None if inplace=True.

Return type:

DataFrame or None

Raises:

KeyError – If any of the labels is not found in the selected axis.

See also

DataFrame.loc

Label-location based indexer for selection by label.

DataFrame.dropna

Return DataFrame with labels on given axis omitted where (all or any) data are missing.

DataFrame.drop_duplicates

Return DataFrame with duplicate rows removed, optionally only considering certain columns.

Series.drop

Return Series with specified index labels removed.

Examples

>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
...                   columns=['A', 'B', 'C', 'D'])
>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

Drop columns

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11

Drop a row by index

>>> df.drop([0, 1])
   A  B   C   D
2  8  9  10  11

Drop columns and/or rows of MultiIndex DataFrame

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3, 0.2]])
>>> df
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2

Drop a specific index combination from the MultiIndex DataFrame, i.e., drop the combination 'falcon' and 'weight', which deletes only the corresponding row

>>> df.drop(index=('falcon', 'weight'))
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        length  0.3     0.2
>>> df.drop(index='cow', columns='small')
                big
lama    speed   45.0
        weight  200.0
        length  1.5
falcon  speed   320.0
        weight  1.0
        length  0.3
>>> df.drop(index='length', level=1)
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
cow     speed   30.0    20.0
        weight  250.0   150.0
falcon  speed   320.0   250.0
        weight  1.0     0.8
drop_duplicates(subset=None, *, keep='first', inplace=False, ignore_index=False)

Return DataFrame with duplicate rows removed.

Considering certain columns is optional. Indexes, including time indexes are ignored.

Parameters:
  • subset (column label or sequence of labels, optional) – Only consider certain columns for identifying duplicates, by default use all of the columns.

  • keep ({'first', 'last', False}, default 'first') – Determines which duplicates (if any) to keep. - first : Drop duplicates except for the first occurrence. - last : Drop duplicates except for the last occurrence. - False : Drop all duplicates.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.

  • ignore_index (bool, default False) –

    If True, the resulting axis will be labeled 0, 1, …, n - 1.

    New in version 1.0.0.

Returns:

DataFrame with duplicates removed or None if inplace=True.

Return type:

DataFrame or None

See also

DataFrame.value_counts

Count unique combinations of columns.

Examples

Consider dataset containing ramen rating.

>>> df = pd.DataFrame({
...     'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
...     'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
...     'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
    brand style  rating
0  Yum Yum   cup     4.0
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

By default, it removes duplicate rows based on all columns.

>>> df.drop_duplicates()
    brand style  rating
0  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

To remove duplicates on specific column(s), use subset.

>>> df.drop_duplicates(subset=['brand'])
    brand style  rating
0  Yum Yum   cup     4.0
2  Indomie   cup     3.5

To remove duplicates and keep last occurrences, use keep.

>>> df.drop_duplicates(subset=['brand', 'style'], keep='last')
    brand style  rating
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
4  Indomie  pack     5.0
droplevel(level, axis=0)

Return Series/DataFrame with requested index / column level(s) removed.

Parameters:
  • level (int, str, or list-like) – If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) –

    Axis along which the level(s) is removed:

    • 0 or ‘index’: remove level(s) in column.

    • 1 or ‘columns’: remove level(s) in row.

    For Series this parameter is unused and defaults to 0.

  • self (NDFrameT) –

Returns:

Series/DataFrame with requested index / column level(s) removed.

Return type:

Series/DataFrame

Examples

>>> df = pd.DataFrame([
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12]
... ]).set_index([0, 1]).rename_axis(['a', 'b'])
>>> df.columns = pd.MultiIndex.from_tuples([
...     ('c', 'e'), ('d', 'f')
... ], names=['level_1', 'level_2'])
>>> df
level_1   c   d
level_2   e   f
a b
1 2      3   4
5 6      7   8
9 10    11  12
>>> df.droplevel('a')
level_1   c   d
level_2   e   f
b
2        3   4
6        7   8
10      11  12
>>> df.droplevel('level_2', axis=1)
level_1   c   d
a b
1 2      3   4
5 6      7   8
9 10    11  12
dropna(*, axis=0, how=_NoDefault.no_default, thresh=_NoDefault.no_default, subset=None, inplace=False)

Remove missing values.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) –

    Determine if rows or columns which contain missing values are removed.

    • 0, or ‘index’ : Drop rows which contain missing values.

    • 1, or ‘columns’ : Drop columns which contain missing value.

    Changed in version 1.0.0: Pass tuple or list to drop on multiple axes. Only a single axis is allowed.

  • how ({'any', 'all'}, default 'any') –

    Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.

    • ’any’ : If any NA values are present, drop that row or column.

    • ’all’ : If all values are NA, drop that row or column.

  • thresh (int, optional) – Require that many non-NA values. Cannot be combined with how.

  • subset (column label or sequence of labels, optional) – Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.

Returns:

DataFrame with NA entries dropped from it or None if inplace=True.

Return type:

DataFrame or None

See also

DataFrame.isna

Indicate missing values.

DataFrame.notna

Indicate existing (non-missing) values.

DataFrame.fillna

Replace missing values.

Series.dropna

Drop missing values.

Index.dropna

Drop missing indices.

Examples

>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
...                    "toy": [np.nan, 'Batmobile', 'Bullwhip'],
...                    "born": [pd.NaT, pd.Timestamp("1940-04-25"),
...                             pd.NaT]})
>>> df
       name        toy       born
0    Alfred        NaN        NaT
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Drop the rows where at least one element is missing.

>>> df.dropna()
     name        toy       born
1  Batman  Batmobile 1940-04-25

Drop the columns where at least one element is missing.

>>> df.dropna(axis='columns')
       name
0    Alfred
1    Batman
2  Catwoman

Drop the rows where all elements are missing.

>>> df.dropna(how='all')
       name        toy       born
0    Alfred        NaN        NaT
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Keep only the rows with at least 2 non-NA values.

>>> df.dropna(thresh=2)
       name        toy       born
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Define in which columns to look for missing values.

>>> df.dropna(subset=['name', 'toy'])
       name        toy       born
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Keep the DataFrame with valid entries in the same variable.

>>> df.dropna(inplace=True)
>>> df
     name        toy       born
1  Batman  Batmobile 1940-04-25
duplicated(subset=None, keep='first')

Return boolean Series denoting duplicate rows.

Considering certain columns is optional.

Parameters:
  • subset (column label or sequence of labels, optional) – Only consider certain columns for identifying duplicates, by default use all of the columns.

  • keep ({'first', 'last', False}, default 'first') –

    Determines which duplicates (if any) to mark.

    • first : Mark duplicates as True except for the first occurrence.

    • last : Mark duplicates as True except for the last occurrence.

    • False : Mark all duplicates as True.

Returns:

Boolean series for each duplicated rows.

Return type:

Series

See also

Index.duplicated

Equivalent method on index.

Series.duplicated

Equivalent method on Series.

Series.drop_duplicates

Remove duplicate values from Series.

DataFrame.drop_duplicates

Remove duplicate values from DataFrame.

Examples

Consider dataset containing ramen rating.

>>> df = pd.DataFrame({
...     'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
...     'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
...     'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
    brand style  rating
0  Yum Yum   cup     4.0
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

By default, for each set of duplicated values, the first occurrence is set on False and all others on True.

>>> df.duplicated()
0    False
1     True
2    False
3    False
4    False
dtype: bool

By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True.

>>> df.duplicated(keep='last')
0     True
1    False
2    False
3    False
4    False
dtype: bool

By setting keep on False, all duplicates are True.

>>> df.duplicated(keep=False)
0     True
1     True
2    False
3    False
4    False
dtype: bool

To find duplicates on specific column(s), use subset.

>>> df.duplicated(subset=['brand'])
0    False
1     True
2    False
3     True
4     True
dtype: bool
eq(other, axis='columns', level=None)

Get Equal to of dataframe and other, element-wise (binary operator eq).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
equals(other)

Test whether two objects contain the same elements.

This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal.

The row/column index do not need to have the same type, as long as the values are considered equal. Corresponding columns must be of the same dtype.

Parameters:

other (Series or DataFrame) – The other Series or DataFrame to be compared with the first.

Returns:

True if all elements are the same in both objects, False otherwise.

Return type:

bool

See also

Series.eq

Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise.

DataFrame.eq

Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise.

testing.assert_series_equal

Raises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others.

testing.assert_frame_equal

Like assert_series_equal, but targets DataFrames.

numpy.array_equal

Return True if two arrays have the same shape and elements, False otherwise.

Examples

>>> df = pd.DataFrame({1: [10], 2: [20]})
>>> df
    1   2
0  10  20

DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True.

>>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})
>>> exactly_equal
    1   2
0  10  20
>>> df.equals(exactly_equal)
True

DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True.

>>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]})
>>> different_column_type
   1.0  2.0
0   10   20
>>> df.equals(different_column_type)
True

DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types.

>>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]})
>>> different_data_type
      1     2
0  10.0  20.0
>>> df.equals(different_data_type)
False
eval(expr, *, inplace=False, **kwargs)

Evaluate a string describing operations on DataFrame columns.

Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function.

Parameters:
  • expr (str) – The expression string to evaluate.

  • inplace (bool, default False) – If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned.

  • **kwargs – See the documentation for eval() for complete details on the keyword arguments accepted by query().

Returns:

The result of the evaluation or None if inplace=True.

Return type:

ndarray, scalar, pandas object, or None

See also

DataFrame.query

Evaluates a boolean expression to query the columns of a frame.

DataFrame.assign

Can evaluate an expression or function to create new values for a column.

eval

Evaluate a Python expression as a string using various backends.

Notes

For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval.

Examples

>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df
   A   B
0  1  10
1  2   8
2  3   6
3  4   4
4  5   2
>>> df.eval('A + B')
0    11
1    10
2     9
3     8
4     7
dtype: int64

Assignment is allowed though by default the original DataFrame is not modified.

>>> df.eval('C = A + B')
   A   B   C
0  1  10  11
1  2   8  10
2  3   6   9
3  4   4   8
4  5   2   7
>>> df
   A   B
0  1  10
1  2   8
2  3   6
3  4   4
4  5   2

Use inplace=True to modify the original DataFrame.

>>> df.eval('C = A + B', inplace=True)
>>> df
   A   B   C
0  1  10  11
1  2   8  10
2  3   6   9
3  4   4   8
4  5   2   7

Multiple columns can be assigned to using multi-line expressions:

>>> df.eval(
...     '''
... C = A + B
... D = A - B
... '''
... )
   A   B   C  D
0  1  10  11 -9
1  2   8  10 -6
2  3   6   9 -3
3  4   4   8  0
4  5   2   7  3
ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, times=None, method='single')

Provide exponentially weighted (EW) calculations.

Exactly one of com, span, halflife, or alpha must be provided if times is not provided. If times is provided, halflife and one of com, span or alpha may be provided.

Parameters:
  • com (float, optional) –

    Specify decay in terms of center of mass

    \(\alpha = 1 / (1 + com)\), for \(com \geq 0\).

  • span (float, optional) –

    Specify decay in terms of span

    \(\alpha = 2 / (span + 1)\), for \(span \geq 1\).

  • halflife (float, str, timedelta, optional) –

    Specify decay in terms of half-life

    \(\alpha = 1 - \exp\left(-\ln(2) / halflife\right)\), for \(halflife > 0\).

    If times is specified, a timedelta convertible unit over which an observation decays to half its value. Only applicable to mean(), and halflife value will not apply to the other functions.

    New in version 1.1.0.

  • alpha (float, optional) –

    Specify smoothing factor \(\alpha\) directly

    \(0 < \alpha \leq 1\).

  • min_periods (int, default 0) – Minimum number of observations in window required to have a value; otherwise, result is np.nan.

  • adjust (bool, default True) –

    Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average).

    • When adjust=True (default), the EW function is calculated using weights \(w_i = (1 - \alpha)^i\). For example, the EW moving average of the series [\(x_0, x_1, ..., x_t\)] would be:

    \[y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}\]
    • When adjust=False, the exponentially weighted function is calculated recursively:

    \[\begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split}\]

  • ignore_na (bool, default False) –

    Ignore missing values when calculating weights.

    • When ignore_na=False (default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) if adjust=True, and \((1-\alpha)^2\) and \(\alpha\) if adjust=False.

    • When ignore_na=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) if adjust=True, and \(1-\alpha\) and \(\alpha\) if adjust=False.

  • axis ({0, 1}, default 0) –

    If 0 or 'index', calculate across the rows.

    If 1 or 'columns', calculate across the columns.

    For Series this parameter is unused and defaults to 0.

  • times (str, np.ndarray, Series, default None) –

    New in version 1.1.0.

    Only applicable to mean().

    Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype.

    If 1-D array like, a sequence with the same shape as the observations.

    Deprecated since version 1.4.0: If str, the name of the column in the DataFrame representing the times.

  • method (str {'single', 'table'}, default 'single') –

    New in version 1.4.0.

    Execute the rolling operation per single column or row ('single') or over the entire object ('table').

    This argument is only implemented when specifying engine='numba' in the method call.

    Only applicable to mean()

Return type:

ExponentialMovingWindow subclass

See also

rolling

Provides rolling window calculations.

expanding

Provides expanding transformations.

Notes

See Windowing Operations for further usage details and examples.

Examples

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0
>>> df.ewm(com=0.5).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
>>> df.ewm(alpha=2 / 3).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213

adjust

>>> df.ewm(com=0.5, adjust=True).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
>>> df.ewm(com=0.5, adjust=False).mean()
          B
0  0.000000
1  0.666667
2  1.555556
3  1.555556
4  3.650794

ignore_na

>>> df.ewm(com=0.5, ignore_na=True).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.225000
>>> df.ewm(com=0.5, ignore_na=False).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213

times

Exponentially weighted mean with weights calculated with a timedelta halflife relative to times.

>>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
>>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
          B
0  0.000000
1  0.585786
2  1.523889
3  1.523889
4  3.233686
expanding(min_periods=1, center=None, axis=0, method='single')

Provide expanding window calculations.

Parameters:
  • min_periods (int, default 1) – Minimum number of observations in window required to have a value; otherwise, result is np.nan.

  • center (bool, default False) –

    If False, set the window labels as the right edge of the window index.

    If True, set the window labels as the center of the window index.

    Deprecated since version 1.1.0.

  • axis (int or str, default 0) –

    If 0 or 'index', roll across the rows.

    If 1 or 'columns', roll across the columns.

    For Series this parameter is unused and defaults to 0.

  • method (str {'single', 'table'}, default 'single') –

    Execute the rolling operation per single column or row ('single') or over the entire object ('table').

    This argument is only implemented when specifying engine='numba' in the method call.

    New in version 1.3.0.

Return type:

Expanding subclass

See also

rolling

Provides rolling window calculations.

ewm

Provides exponential weighted functions.

Notes

See Windowing Operations for further usage details and examples.

Examples

>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

min_periods

Expanding sum with 1 vs 3 observations needed to calculate a value.

>>> df.expanding(1).sum()
     B
0  0.0
1  1.0
2  3.0
3  3.0
4  7.0
>>> df.expanding(3).sum()
     B
0  NaN
1  NaN
2  3.0
3  3.0
4  7.0
explode(column, ignore_index=False)

Transform each element of a list-like to a row, replicating index values.

New in version 0.25.0.

Parameters:
  • column (IndexLabel) –

    Column(s) to explode. For multiple columns, specify a non-empty list with each element be str or tuple, and all specified columns their list-like data on same row of the frame must have matching length.

    New in version 1.3.0: Multi-column explode

  • ignore_index (bool, default False) –

    If True, the resulting index will be labeled 0, 1, …, n - 1.

    New in version 1.1.0.

Returns:

Exploded lists to rows of the subset columns; index will be duplicated for these rows.

Return type:

DataFrame

Raises:

ValueError :

  • If columns of the frame are not unique. * If specified columns to explode is empty list. * If specified columns to explode have not matching count of elements rowwise in the frame.

See also

DataFrame.unstack

Pivot a level of the (necessarily hierarchical) index labels.

DataFrame.melt

Unpivot a DataFrame from wide format to long format.

Series.explode

Explode a DataFrame from list-like columns to long format.

Notes

This routine will explode list-likes including lists, tuples, sets, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of rows in the output will be non-deterministic when exploding sets.

Reference the user guide for more examples.

Examples

>>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
...                    'B': 1,
...                    'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]})
>>> df
           A  B          C
0  [0, 1, 2]  1  [a, b, c]
1        foo  1        NaN
2         []  1         []
3     [3, 4]  1     [d, e]

Single-column explode.

>>> df.explode('A')
     A  B          C
0    0  1  [a, b, c]
0    1  1  [a, b, c]
0    2  1  [a, b, c]
1  foo  1        NaN
2  NaN  1         []
3    3  1     [d, e]
3    4  1     [d, e]

Multi-column explode.

>>> df.explode(list('AC'))
     A  B    C
0    0  1    a
0    1  1    b
0    2  1    c
1  foo  1  NaN
2  NaN  1  NaN
3    3  1    d
3    4  1    e
ffill(*, axis=None, inplace=False, limit=None, downcast=None)
Parameters:
  • axis (Union[None, str, int]) –

  • inplace (bool) –

  • limit (None | int) –

  • downcast (dict | None) –

Return type:

pandas.core.frame.DataFrame | None

fillna(value=None, *, method=None, axis=None, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method.

Parameters:
  • value (scalar, dict, Series, or DataFrame) – Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list.

  • method ({'backfill', 'bfill', 'pad', 'ffill', None}, default None) – Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap.

  • axis ({0 or 'index', 1 or 'columns'}) – Axis along which to fill missing values. For Series this parameter is unused and defaults to 0.

  • inplace (bool, default False) – If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).

  • limit (int, default None) – If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

  • downcast (dict, default is None) – A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).

Returns:

Object with missing values filled or None if inplace=True.

Return type:

DataFrame or None

See also

interpolate

Fill NaN values using interpolation.

reindex

Conform object to new index.

asfreq

Convert TimeSeries to specified frequency.

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, np.nan],
...                    [np.nan, 3, np.nan, 4]],
...                   columns=list("ABCD"))
>>> df
     A    B   C    D
0  NaN  2.0 NaN  0.0
1  3.0  4.0 NaN  1.0
2  NaN  NaN NaN  NaN
3  NaN  3.0 NaN  4.0

Replace all NaN elements with 0s.

>>> df.fillna(0)
     A    B    C    D
0  0.0  2.0  0.0  0.0
1  3.0  4.0  0.0  1.0
2  0.0  0.0  0.0  0.0
3  0.0  3.0  0.0  4.0

We can also propagate non-null values forward or backward.

>>> df.fillna(method="ffill")
     A    B   C    D
0  NaN  2.0 NaN  0.0
1  3.0  4.0 NaN  1.0
2  3.0  4.0 NaN  1.0
3  3.0  3.0 NaN  4.0

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
>>> df.fillna(value=values)
     A    B    C    D
0  0.0  2.0  2.0  0.0
1  3.0  4.0  2.0  1.0
2  0.0  1.0  2.0  3.0
3  0.0  3.0  2.0  4.0

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
     A    B    C    D
0  0.0  2.0  2.0  0.0
1  3.0  4.0  NaN  1.0
2  NaN  1.0  NaN  3.0
3  NaN  3.0  NaN  4.0

When filling using a DataFrame, replacement happens along the same column names and same indices

>>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE"))
>>> df.fillna(df2)
     A    B    C    D
0  0.0  2.0  0.0  0.0
1  3.0  4.0  0.0  1.0
2  0.0  0.0  0.0  NaN
3  0.0  3.0  0.0  4.0

Note that column D is not affected since it is not present in df2.

filter(items=None, like=None, regex=None, axis=None)

Subset the dataframe rows or columns according to the specified index labels.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters:
  • items (list-like) – Keep labels from axis which are in items.

  • like (str) – Keep labels from axis for which “like in label == True”.

  • regex (str (regular expression)) – Keep labels from axis for which re.search(regex, label) == True.

  • axis ({0 or ‘index’, 1 or ‘columns’, None}, default None) – The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, ‘columns’ for DataFrame. For Series this parameter is unused and defaults to None.

  • self (NDFrameT) –

Return type:

same type as input object

See also

DataFrame.loc

Access a group of rows and columns by label(s) or a boolean array.

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].

Examples

>>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])),
...                   index=['mouse', 'rabbit'],
...                   columns=['one', 'two', 'three'])
>>> df
        one  two  three
mouse     1    2      3
rabbit    4    5      6
>>> # select columns by name
>>> df.filter(items=['one', 'three'])
         one  three
mouse     1      3
rabbit    4      6
>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
         one  three
mouse     1      3
rabbit    4      6
>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
         one  two  three
rabbit    4    5      6
first(offset)

Select initial periods of time series data based on a date offset.

When having a DataFrame with dates as index, this function can select the first few rows based on a date offset.

Parameters:
  • offset (str, DateOffset or dateutil.relativedelta) – The offset length of the data that will be selected. For instance, ‘1M’ will display all the rows having their index within the first month.

  • self (NDFrameT) –

Returns:

A subset of the caller.

Return type:

Series or DataFrame

Raises:

TypeError – If the index is not a DatetimeIndex

See also

last

Select final periods of time series based on a date offset.

at_time

Select values at a particular time of the day.

between_time

Select values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the first 3 days:

>>> ts.first('3D')
            A
2018-04-09  1
2018-04-11  2

Notice the data for 3 first calendar days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned.

first_valid_index()

Return index for first non-NA value or None, if no non-NA value is found.

Returns:

scalar

Return type:

type of index

Notes

If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.

floordiv(other, axis='columns', level=None, fill_value=None)

Get Integer division of dataframe and other, element-wise (binary operator floordiv).

Equivalent to dataframe // other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rfloordiv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
classmethod from_dict(data, orient='columns', dtype=None, columns=None)

Construct DataFrame from dict of array-like or dicts.

Creates DataFrame object from dictionary by columns or by index allowing dtype specification.

Parameters:
  • data (dict) – Of the form {field : array-like} or {field : dict}.

  • orient ({'columns', 'index', 'tight'}, default 'columns') –

    The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’].

    New in version 1.4.0: ‘tight’ as an allowed value for the orient argument

  • dtype (dtype, default None) – Data type to force, otherwise infer.

  • columns (list, default None) – Column labels to use when orient='index'. Raises a ValueError if used with orient='columns' or orient='tight'.

Return type:

DataFrame

See also

DataFrame.from_records

DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame.

DataFrame

DataFrame object creation using constructor.

DataFrame.to_dict

Convert the DataFrame to a dictionary.

Examples

By default the keys of the dict become the DataFrame columns:

>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d

Specify orient='index' to create the DataFrame using dictionary keys as rows:

>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
       0  1  2  3
row_1  3  2  1  0
row_2  a  b  c  d

When using the ‘index’ orientation, the column names can be specified manually:

>>> pd.DataFrame.from_dict(data, orient='index',
...                        columns=['A', 'B', 'C', 'D'])
       A  B  C  D
row_1  3  2  1  0
row_2  a  b  c  d

Specify orient='tight' to create the DataFrame using a ‘tight’ format:

>>> data = {'index': [('a', 'b'), ('a', 'c')],
...         'columns': [('x', 1), ('y', 2)],
...         'data': [[1, 3], [2, 4]],
...         'index_names': ['n1', 'n2'],
...         'column_names': ['z1', 'z2']}
>>> pd.DataFrame.from_dict(data, orient='tight')
z1     x  y
z2     1  2
n1 n2
a  b   1  3
   c   2  4
classmethod from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame.

Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame.

Parameters:
  • data (structured ndarray, sequence of tuples or dicts, or DataFrame) – Structured input data.

  • index (str, list of fields, array-like) – Field of array to use as the index, alternately a specific set of input labels to use.

  • exclude (sequence, default None) – Columns or fields to exclude.

  • columns (sequence, default None) – Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns).

  • coerce_float (bool, default False) – Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets.

  • nrows (int, default None) – Number of rows to read if data is an iterator.

Return type:

DataFrame

See also

DataFrame.from_dict

DataFrame from dict of array-like or dicts.

DataFrame

DataFrame object creation using constructor.

Examples

Data can be provided as a structured ndarray:

>>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')],
...                 dtype=[('col_1', 'i4'), ('col_2', 'U1')])
>>> pd.DataFrame.from_records(data)
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d

Data can be provided as a list of dicts:

>>> data = [{'col_1': 3, 'col_2': 'a'},
...         {'col_1': 2, 'col_2': 'b'},
...         {'col_1': 1, 'col_2': 'c'},
...         {'col_1': 0, 'col_2': 'd'}]
>>> pd.DataFrame.from_records(data)
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d

Data can be provided as a list of tuples with corresponding columns:

>>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')]
>>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2'])
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d
ge(other, axis='columns', level=None)

Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
get(key, default=None)

Get item from object for given key (ex: DataFrame column).

Returns default value if not found.

Parameters:

key (object) –

Returns:

value

Return type:

same type as items contained in object

Examples

>>> df = pd.DataFrame(
...     [
...         [24.3, 75.7, "high"],
...         [31, 87.8, "high"],
...         [22, 71.6, "medium"],
...         [35, 95, "medium"],
...     ],
...     columns=["temp_celsius", "temp_fahrenheit", "windspeed"],
...     index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"),
... )
>>> df
            temp_celsius  temp_fahrenheit windspeed
2014-02-12          24.3             75.7      high
2014-02-13          31.0             87.8      high
2014-02-14          22.0             71.6    medium
2014-02-15          35.0             95.0    medium
>>> df.get(["temp_celsius", "windspeed"])
            temp_celsius windspeed
2014-02-12          24.3      high
2014-02-13          31.0      high
2014-02-14          22.0    medium
2014-02-15          35.0    medium

If the key isn’t found, the default value will be used.

>>> df.get(["temp_celsius", "temp_kelvin"], default="default_value")
'default_value'
groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=_NoDefault.no_default, squeeze=_NoDefault.no_default, observed=False, dropna=True)

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Parameters:
  • by (mapping, function, label, or list of labels) – Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If a list or ndarray of length equal to the selected axis is passed (see the groupby user guide), the values are used as-is to determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted as a (single) key.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Split along rows (0) or columns (1). For Series this parameter is unused and defaults to 0.

  • level (int, level name, or sequence of such, default None) – If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both by and level.

  • as_index (bool, default True) – For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output.

  • sort (bool, default True) – Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group.

  • group_keys (bool, optional) –

    When calling apply and the by argument produces a like-indexed (i.e. a transform) result, add group keys to index to identify pieces. By default group keys are not included when the result’s index (and column) labels match the inputs, and are included otherwise. This argument has no effect if the result produced is not like-indexed with respect to the input.

    Changed in version 1.5.0: Warns that group_keys will no longer be ignored when the result from apply is a like-indexed Series or DataFrame. Specify group_keys explicitly to include the group keys or not.

  • squeeze (bool, default False) –

    Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

    Deprecated since version 1.1.0.

  • observed (bool, default False) – This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.

  • dropna (bool, default True) –

    If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups.

    New in version 1.1.0.

Returns:

Returns a groupby object that contains information about the groups.

Return type:

DataFrameGroupBy

See also

resample

Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more detailed usage and examples, including splitting an object into groups, iterating through groups, selecting a group, aggregation, and more.

Examples

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0

Hierarchical Indexes

We can groupby different levels of a hierarchical index using the level parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
...           ['Captive', 'Wild', 'Captive', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]},
...                   index=index)
>>> df
                Max Speed
Animal Type
Falcon Captive      390.0
       Wild         350.0
Parrot Captive       30.0
       Wild          20.0
>>> df.groupby(level=0).mean()
        Max Speed
Animal
Falcon      370.0
Parrot       25.0
>>> df.groupby(level="Type").mean()
         Max Speed
Type
Captive      210.0
Wild         185.0

We can also choose to include NA in group keys or not by setting dropna parameter, the default setting is True.

>>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])
>>> df.groupby(by=["b"]).sum()
    a   c
b
1.0 2   3
2.0 2   5
>>> df.groupby(by=["b"], dropna=False).sum()
    a   c
b
1.0 2   3
2.0 2   5
NaN 1   4
>>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])
>>> df.groupby(by="a").sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0
>>> df.groupby(by="a", dropna=False).sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0
NaN 12.3   33.0

When using .apply(), use group_keys to include or exclude the group keys. The group_keys argument defaults to True (include).

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df.groupby("Animal", group_keys=True).apply(lambda x: x)
          Animal  Max Speed
Animal
Falcon 0  Falcon      380.0
       1  Falcon      370.0
Parrot 2  Parrot       24.0
       3  Parrot       26.0
>>> df.groupby("Animal", group_keys=False).apply(lambda x: x)
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
gt(other, axis='columns', level=None)

Get Greater than of dataframe and other, element-wise (binary operator gt).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
head(n=5)

Return the first n rows.

This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it.

For negative values of n, this function returns all rows except the last |n| rows, equivalent to df[:n].

If n is larger than the number of rows, this function returns all rows.

Parameters:
  • n (int, default 5) – Number of rows to select.

  • self (NDFrameT) –

Returns:

The first n rows of the caller object.

Return type:

same type as caller

See also

DataFrame.tail

Returns the last n rows.

Examples

>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
...                    'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df
      animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
5     parrot
6      shark
7      whale
8      zebra

Viewing the first 5 lines

>>> df.head()
      animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey

Viewing the first n lines (three in this case)

>>> df.head(3)
      animal
0  alligator
1        bee
2     falcon

For negative values of n

>>> df.head(-3)
      animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
5     parrot
hist(column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, backend=None, legend=False, **kwargs)

Make a histogram of the DataFrame’s columns.

A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.hist(), on each series in the DataFrame, resulting in one histogram per column.

Parameters:
  • data (DataFrame) – The pandas object holding the data.

  • column (str or sequence, optional) – If passed, will be used to limit data to a subset of columns.

  • by (object, optional) – If passed, then used to form histograms for separate groups.

  • grid (bool, default True) – Whether to show axis grid lines.

  • xlabelsize (int, default None) – If specified changes the x-axis label size.

  • xrot (float, default None) – Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise.

  • ylabelsize (int, default None) – If specified changes the y-axis label size.

  • yrot (float, default None) – Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise.

  • ax (Matplotlib axes object, default None) – The axes to plot the histogram on.

  • sharex (bool, default True if ax is None else False) – In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure.

  • sharey (bool, default False) – In case subplots=True, share y axis and set some y axis labels to invisible.

  • figsize (tuple, optional) – The size in inches of the figure to create. Uses the value in matplotlib.rcParams by default.

  • layout (tuple, optional) – Tuple of (rows, columns) for the layout of the histograms.

  • bins (int or sequence, default 10) – Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified.

  • backend (str, default None) –

    Backend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend.

    New in version 1.0.0.

  • legend (bool, default False) –

    Whether to show the legend.

    New in version 1.1.0.

  • **kwargs – All other plotting keyword arguments to be passed to matplotlib.pyplot.hist().

Return type:

matplotlib.AxesSubplot or numpy.ndarray of them

See also

matplotlib.pyplot.hist

Plot a histogram using matplotlib.

Examples

This example draws a histogram based on the length and width of some animals, displayed in three bins

idxmax(axis=0, skipna=True, numeric_only=False)

Return index of first occurrence of maximum over requested axis.

NA/null values are excluded.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • numeric_only (bool, default False) –

    Include only float, int or boolean data.

    New in version 1.5.0.

Returns:

Indexes of maxima along the specified axis.

Return type:

Series

Raises:

ValueError

  • If the row/column is empty

See also

Series.idxmax

Return index of the maximum element.

Notes

This method is the DataFrame version of ndarray.argmax.

Examples

Consider a dataset containing food consumption in Argentina.

>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
...                    'co2_emissions': [37.2, 19.66, 1712]},
...                    index=['Pork', 'Wheat Products', 'Beef'])
>>> df
                consumption  co2_emissions
Pork                  10.51         37.20
Wheat Products       103.11         19.66
Beef                  55.48       1712.00

By default, it returns the index for the maximum value in each column.

>>> df.idxmax()
consumption     Wheat Products
co2_emissions             Beef
dtype: object

To return the index for the maximum value in each row, use axis="columns".

>>> df.idxmax(axis="columns")
Pork              co2_emissions
Wheat Products     consumption
Beef              co2_emissions
dtype: object
idxmin(axis=0, skipna=True, numeric_only=False)

Return index of first occurrence of minimum over requested axis.

NA/null values are excluded.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • numeric_only (bool, default False) –

    Include only float, int or boolean data.

    New in version 1.5.0.

Returns:

Indexes of minima along the specified axis.

Return type:

Series

Raises:

ValueError

  • If the row/column is empty

See also

Series.idxmin

Return index of the minimum element.

Notes

This method is the DataFrame version of ndarray.argmin.

Examples

Consider a dataset containing food consumption in Argentina.

>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
...                    'co2_emissions': [37.2, 19.66, 1712]},
...                    index=['Pork', 'Wheat Products', 'Beef'])
>>> df
                consumption  co2_emissions
Pork                  10.51         37.20
Wheat Products       103.11         19.66
Beef                  55.48       1712.00

By default, it returns the index for the minimum value in each column.

>>> df.idxmin()
consumption                Pork
co2_emissions    Wheat Products
dtype: object

To return the index for the minimum value in each row, use axis="columns".

>>> df.idxmin(axis="columns")
Pork                consumption
Wheat Products    co2_emissions
Beef                consumption
dtype: object
infer_objects()

Attempt to infer better dtypes for object columns.

Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction.

Returns:

converted

Return type:

same type as input object

Parameters:

self (NDFrameT) –

See also

to_datetime

Convert argument to datetime.

to_timedelta

Convert argument to timedelta.

to_numeric

Convert argument to numeric type.

convert_dtypes

Convert argument to best possible dtype.

Examples

>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
>>> df = df.iloc[1:]
>>> df
   A
1  1
2  2
3  3
>>> df.dtypes
A    object
dtype: object
>>> df.infer_objects().dtypes
A    int64
dtype: object
info(verbose=None, buf=None, max_cols=None, memory_usage=None, show_counts=None, null_counts=None)

Print a concise summary of a DataFrame.

This method prints information about a DataFrame including the index dtype and columns, non-null values and memory usage.

Parameters:
  • verbose (bool, optional) – Whether to print the full summary. By default, the setting in pandas.options.display.max_info_columns is followed.

  • buf (writable buffer, defaults to sys.stdout) – Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than max_cols columns, the truncated output is used. By default, the setting in pandas.options.display.max_info_columns is used.

  • memory_usage (bool, str, optional) –

    Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the pandas.options.display.memory_usage setting.

    True always show memory usage. False never shows memory usage. A value of ‘deep’ is equivalent to “True with deep introspection”. Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. See the Frequently Asked Questions for more details.

  • show_counts (bool, optional) – Whether to show the non-null counts. By default, this is shown only if the DataFrame is smaller than pandas.options.display.max_info_rows and pandas.options.display.max_info_columns. A value of True always shows the counts, and False never shows the counts.

  • null_counts (bool, optional) –

    Deprecated since version 1.2.0: Use show_counts instead.

  • max_cols (int | None) –

Returns:

This method prints a summary of a DataFrame and returns None.

Return type:

None

See also

DataFrame.describe

Generate descriptive statistics of DataFrame columns.

DataFrame.memory_usage

Memory usage of DataFrame columns.

Examples

>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
...                   "float_col": float_values})
>>> df
    int_col text_col  float_col
0        1    alpha       0.00
1        2     beta       0.25
2        3    gamma       0.50
3        4    delta       0.75
4        5  epsilon       1.00

Prints information of all columns:

>>> df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 #   Column     Non-Null Count  Dtype
---  ------     --------------  -----
 0   int_col    5 non-null      int64
 1   text_col   5 non-null      object
 2   float_col  5 non-null      float64
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes

Prints a summary of columns count and its dtypes but not per column information:

>>> df.info(verbose=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes

Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file:

>>> import io
>>> buffer = io.StringIO()
>>> df.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w",
...           encoding="utf-8") as f:  
...     f.write(s)
260

The memory_usage parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization:

>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> df = pd.DataFrame({
...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
... })
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
 #   Column    Non-Null Count    Dtype
---  ------    --------------    -----
 0   column_1  1000000 non-null  object
 1   column_2  1000000 non-null  object
 2   column_3  1000000 non-null  object
dtypes: object(3)
memory usage: 22.9+ MB
>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
 #   Column    Non-Null Count    Dtype
---  ------    --------------    -----
 0   column_1  1000000 non-null  object
 1   column_2  1000000 non-null  object
 2   column_3  1000000 non-null  object
dtypes: object(3)
memory usage: 165.9 MB
insert(loc, column, value, allow_duplicates=_NoDefault.no_default)

Insert column into DataFrame at specified location.

Raises a ValueError if column is already contained in the DataFrame, unless allow_duplicates is set to True.

Parameters:
  • loc (int) – Insertion index. Must verify 0 <= loc <= len(columns).

  • column (str, number, or hashable object) – Label of the inserted column.

  • value (Scalar, Series, or array-like) –

  • allow_duplicates (bool, optional, default lib.no_default) –

Return type:

None

See also

Index.insert

Insert new item by index.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df
   col1  col2
0     1     3
1     2     4
>>> df.insert(1, "newcol", [99, 99])
>>> df
   col1  newcol  col2
0     1      99     3
1     2      99     4
>>> df.insert(0, "col1", [100, 100], allow_duplicates=True)
>>> df
   col1  col1  newcol  col2
0   100     1      99     3
1   100     2      99     4

Notice that pandas uses index alignment in case of value from type Series:

>>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2]))
>>> df
   col0  col1  col1  newcol  col2
0   NaN   100     1      99     3
1   5.0   100     2      99     4
interpolate(method='linear', *, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)
Parameters:
  • self (DataFrame) –

  • method (str) –

  • axis (Union[str, int]) –

  • limit (int | None) –

  • inplace (bool) –

  • limit_direction (str | None) –

  • limit_area (str | None) –

  • downcast (str | None) –

Return type:

pandas.core.frame.DataFrame | None

isetitem(loc, value)

Set the given value in the column with position ‘loc’.

This is a positional analogue to __setitem__.

Parameters:
  • loc (int or sequence of ints) –

  • value (scalar or arraylike) –

Return type:

None

Notes

Unlike frame.iloc[:, i] = value, frame.isetitem(loc, value) will _never_ try to set the values in place, but will always insert a new array.

In cases where frame.columns is unique, this is equivalent to frame[frame.columns[i]] = value.

isin(values)

Whether each element in the DataFrame is contained in values.

Parameters:

values (iterable, Series, DataFrame or dict) – The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.

Returns:

DataFrame of booleans showing whether each element in the DataFrame is contained in values.

Return type:

DataFrame

See also

DataFrame.eq

Equality test for DataFrame.

Series.isin

Equivalent method on Series.

Series.str.contains

Test if pattern or regex is contained within a string of a Series or Index.

Examples

>>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]},
...                   index=['falcon', 'dog'])
>>> df
        num_legs  num_wings
falcon         2          2
dog            4          0

When values is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings)

>>> df.isin([0, 2])
        num_legs  num_wings
falcon      True       True
dog        False       True

To check if values is not in the DataFrame, use the ~ operator:

>>> ~df.isin([0, 2])
        num_legs  num_wings
falcon     False      False
dog         True      False

When values is a dict, we can pass values to check for each column separately:

>>> df.isin({'num_wings': [0, 3]})
        num_legs  num_wings
falcon     False      False
dog        False       True

When values is a Series or DataFrame the index and column must match. Note that ‘falcon’ does not match based on the number of legs in other.

>>> other = pd.DataFrame({'num_legs': [8, 3], 'num_wings': [0, 2]},
...                      index=['spider', 'falcon'])
>>> df.isin(other)
        num_legs  num_wings
falcon     False       True
dog        False      False
isna()

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:

Mask of bool values for each element in DataFrame that indicates whether an element is an NA value.

Return type:

DataFrame

See also

DataFrame.isnull

Alias of isna.

DataFrame.notna

Boolean inverse of isna.

DataFrame.dropna

Omit axes labels with missing values.

isna

Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()
0    False
1    False
2     True
dtype: bool
isnull()

DataFrame.isnull is an alias for DataFrame.isna.

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:

Mask of bool values for each element in DataFrame that indicates whether an element is an NA value.

Return type:

DataFrame

See also

DataFrame.isnull

Alias of isna.

DataFrame.notna

Boolean inverse of isna.

DataFrame.dropna

Omit axes labels with missing values.

isna

Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()
0    False
1    False
2     True
dtype: bool
items()

Iterate over (column name, Series) pairs.

Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.

Yields:
  • label (object) – The column names for the DataFrame being iterated over.

  • content (Series) – The column entries belonging to each label, as a Series.

Return type:

Iterable[tuple[Hashable, pandas.core.series.Series]]

See also

DataFrame.iterrows

Iterate over DataFrame rows as (index, Series) pairs.

DataFrame.itertuples

Iterate over DataFrame rows as namedtuples of the values.

Examples

>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
...                   'population': [1864, 22000, 80000]},
...                   index=['panda', 'polar', 'koala'])
>>> df
        species   population
panda   bear      1864
polar   bear      22000
koala   marsupial 80000
>>> for label, content in df.items():
...     print(f'label: {label}')
...     print(f'content: {content}', sep='\n')
...
label: species
content:
panda         bear
polar         bear
koala    marsupial
Name: species, dtype: object
label: population
content:
panda     1864
polar    22000
koala    80000
Name: population, dtype: int64
iteritems()

Iterate over (column name, Series) pairs.

Deprecated since version 1.5.0: iteritems is deprecated and will be removed in a future version. Use .items instead.

Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.

Yields:
  • label (object) – The column names for the DataFrame being iterated over.

  • content (Series) – The column entries belonging to each label, as a Series.

Return type:

Iterable[tuple[Hashable, pandas.core.series.Series]]

See also

DataFrame.iter

Recommended alternative.

DataFrame.iterrows

Iterate over DataFrame rows as (index, Series) pairs.

DataFrame.itertuples

Iterate over DataFrame rows as namedtuples of the values.

iterrows()

Iterate over DataFrame rows as (index, Series) pairs.

Yields:
  • index (label or tuple of label) – The index of the row. A tuple for a MultiIndex.

  • data (Series) – The data of the row as a Series.

Return type:

Iterable[tuple[Hashable, pandas.core.series.Series]]

See also

DataFrame.itertuples

Iterate over DataFrame rows as namedtuples of the values.

DataFrame.items

Iterate over (column name, Series) pairs.

Notes

  1. Because iterrows returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

    >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
    >>> row = next(df.iterrows())[1]
    >>> row
    int      1.0
    float    1.5
    Name: 0, dtype: float64
    >>> print(row['int'].dtype)
    float64
    >>> print(df['int'].dtype)
    int64
    

    To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns namedtuples of the values and which is generally faster than iterrows.

  2. You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.

itertuples(index=True, name='Pandas')

Iterate over DataFrame rows as namedtuples.

Parameters:
  • index (bool, default True) – If True, return the index as the first element of the tuple.

  • name (str or None, default "Pandas") – The name of the returned namedtuples or None to return regular tuples.

Returns:

An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values.

Return type:

iterator

See also

DataFrame.iterrows

Iterate over DataFrame rows as (index, Series) pairs.

DataFrame.items

Iterate over (column name, Series) pairs.

Notes

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore.

Examples

>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
...                   index=['dog', 'hawk'])
>>> df
      num_legs  num_wings
dog          4          0
hawk         2          2
>>> for row in df.itertuples():
...     print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)

By setting the index parameter to False we can remove the index as the first element of the tuple:

>>> for row in df.itertuples(index=False):
...     print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)

With the name parameter set we set a custom name for the yielded namedtuples:

>>> for row in df.itertuples(name='Animal'):
...     print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)
join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)

Join columns of another DataFrame.

Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.

Parameters:
  • other (DataFrame, Series, or a list containing any combination of them) – Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.

  • on (str, list of str, or array-like, optional) – Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.

  • how ({'left', 'right', 'outer', 'inner'}, default 'left') –

    How to handle the operation of the two objects.

    • left: use calling frame’s index (or column if on is specified)

    • right: use other’s index.

    • outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically.

    • inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one.

    • cross: creates the cartesian product from both frames, preserves the order of the left keys.

      New in version 1.2.0.

  • lsuffix (str, default '') – Suffix to use from left frame’s overlapping columns.

  • rsuffix (str, default '') – Suffix to use from right frame’s overlapping columns.

  • sort (bool, default False) – Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).

  • validate (str, optional) – If specified, checks if join is of specified type. * “one_to_one” or “1:1”: check if join keys are unique in both left and right datasets. * “one_to_many” or “1:m”: check if join keys are unique in left dataset. * “many_to_one” or “m:1”: check if join keys are unique in right dataset. * “many_to_many” or “m:m”: allowed, but does not result in checks. .. versionadded:: 1.5.0

Returns:

A dataframe containing columns from both the caller and other.

Return type:

DataFrame

See also

DataFrame.merge

For column(s)-on-column(s) operations.

Notes

Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects.

Support for specifying index levels as the on parameter was added in version 0.23.0.

Examples

>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
  key   A
0  K0  A0
1  K1  A1
2  K2  A2
3  K3  A3
4  K4  A4
5  K5  A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
...                       'B': ['B0', 'B1', 'B2']})
>>> other
  key   B
0  K0  B0
1  K1  B1
2  K2  B2

Join DataFrames using their indexes.

>>> df.join(other, lsuffix='_caller', rsuffix='_other')
  key_caller   A key_other    B
0         K0  A0        K0   B0
1         K1  A1        K1   B1
2         K2  A2        K2   B2
3         K3  A3       NaN  NaN
4         K4  A4       NaN  NaN
5         K5  A5       NaN  NaN

If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index.

>>> df.set_index('key').join(other.set_index('key'))
      A    B
key
K0   A0   B0
K1   A1   B1
K2   A2   B2
K3   A3  NaN
K4   A4  NaN
K5   A5  NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result.

>>> df.join(other.set_index('key'), on='key')
  key   A    B
0  K0  A0   B0
1  K1  A1   B1
2  K2  A2   B2
3  K3  A3  NaN
4  K4  A4  NaN
5  K5  A5  NaN

Using non-unique key values shows how they are matched.

>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'],
...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
  key   A
0  K0  A0
1  K1  A1
2  K1  A2
3  K3  A3
4  K0  A4
5  K1  A5
>>> df.join(other.set_index('key'), on='key', validate='m:1')
  key   A    B
0  K0  A0   B0
1  K1  A1   B1
2  K1  A2   B1
3  K3  A3  NaN
4  K0  A4   B0
5  K1  A5   B1
keys()

Get the ‘info axis’ (see Indexing for more).

This is index for Series, columns for DataFrame.

Returns:

Info axis.

Return type:

Index

kurt(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

kurtosis(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

last(offset)

Select final periods of time series data based on a date offset.

For a DataFrame with a sorted DatetimeIndex, this function selects the last few rows based on a date offset.

Parameters:
  • offset (str, DateOffset, dateutil.relativedelta) – The offset length of the data that will be selected. For instance, ‘3D’ will display all the rows having their index within the last 3 days.

  • self (NDFrameT) –

Returns:

A subset of the caller.

Return type:

Series or DataFrame

Raises:

TypeError – If the index is not a DatetimeIndex

See also

first

Select initial periods of time series based on a date offset.

at_time

Select values at a particular time of the day.

between_time

Select values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the last 3 days:

>>> ts.last('3D')
            A
2018-04-13  3
2018-04-15  4

Notice the data for 3 last calendar days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned.

last_valid_index()

Return index for last non-NA value or None, if no non-NA value is found.

Returns:

scalar

Return type:

type of index

Notes

If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.

le(other, axis='columns', level=None)

Get Less than or equal to of dataframe and other, element-wise (binary operator le).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
lookup(row_labels, col_labels)

Label-based “fancy indexing” function for DataFrame.

Deprecated since version 1.2.0: DataFrame.lookup is deprecated, use pandas.factorize and NumPy indexing instead. For further details see Looking up values by index/column labels.

Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

Parameters:
  • row_labels (sequence) – The row labels to use for lookup.

  • col_labels (sequence) – The column labels to use for lookup.

Returns:

The found values.

Return type:

numpy.ndarray

lt(other, axis='columns', level=None)

Get Less than of dataframe and other, element-wise (binary operator lt).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
mad(axis=None, skipna=True, level=None)

Return the mean absolute deviation of the values over the requested axis.

Deprecated since version 1.5.0: mad is deprecated.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) – If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

Return type:

Series or DataFrame (if level specified)

static map_dataframe_cols(dataframe, col_mappers=())[source]

Applies a mapping to the DataFrame columns according to the provided column mappers.

Parameters:
  • dataframe (DataFrame) – DataFrame to modify

  • col_mappers (Tuple[ColMap, ...]) – column mappers to be applied

Returns:

DataFrame with mapped columns according to the provided column mappers.

mask(cond, other=nan, *, inplace=False, axis=None, level=None, errors='raise', try_cast=_NoDefault.no_default)
Parameters:
  • inplace (bool) –

  • axis (Optional[Union[str, int]]) –

  • level (Hashable) –

  • errors (Union[Literal['ignore', 'raise'], ~typing.Literal[<no_default>]]) –

  • try_cast (Union[bool, Literal[<no_default>]]) –

Return type:

pandas.core.frame.DataFrame | None

max(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return the maximum of the values over the requested axis.

If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64
>>> s.max()
8
mean(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return the mean of the values over the requested axis.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

median(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return the median of the values over the requested axis.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

melt(id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters:
  • id_vars (tuple, list, or ndarray, optional) – Column(s) to use as identifier variables.

  • value_vars (tuple, list, or ndarray, optional) – Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.

  • var_name (scalar) – Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.

  • value_name (scalar, default 'value') – Name to use for the ‘value’ column.

  • col_level (int or str, optional) – If columns are a MultiIndex then use this level to melt.

  • ignore_index (bool, default True) –

    If True, original index is ignored. If False, the original index is retained. Index labels will be repeated as necessary.

    New in version 1.1.0.

Returns:

Unpivoted DataFrame.

Return type:

DataFrame

See also

melt

Identical method.

pivot_table

Create a spreadsheet-style pivot table as a DataFrame.

DataFrame.pivot

Return reshaped DataFrame organized by given index / column values.

DataFrame.explode

Explode a DataFrame from list-like columns to long format.

Notes

Reference the user guide for more examples.

Examples

>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
...                    'B': {0: 1, 1: 3, 2: 5},
...                    'C': {0: 2, 1: 4, 2: 6}})
>>> df
   A  B  C
0  a  1  2
1  b  3  4
2  c  5  6
>>> df.melt(id_vars=['A'], value_vars=['B'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
>>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
3  a        C      2
4  b        C      4
5  c        C      6

The names of ‘variable’ and ‘value’ columns can be customized:

>>> df.melt(id_vars=['A'], value_vars=['B'],
...         var_name='myVarname', value_name='myValname')
   A myVarname  myValname
0  a         B          1
1  b         B          3
2  c         B          5

Original index values can be kept around:

>>> df.melt(id_vars=['A'], value_vars=['B', 'C'], ignore_index=False)
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
0  a        C      2
1  b        C      4
2  c        C      6

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]
>>> df
   A  B  C
   D  E  F
0  a  1  2
1  b  3  4
2  c  5  6
>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])
  (A, D) variable_0 variable_1  value
0      a          B          E      1
1      b          B          E      3
2      c          B          E      5
memory_usage(index=True, deep=False)

Return the memory usage of each column in bytes.

The memory usage can optionally include the contribution of the index and elements of object dtype.

This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.options.display.memory_usage to False.

Parameters:
  • index (bool, default True) – Specifies whether to include the memory usage of the DataFrame’s index in returned Series. If index=True, the memory usage of the index is the first item in the output.

  • deep (bool, default False) – If True, introspect the data deeply by interrogating object dtypes for system-level memory consumption, and include it in the returned values.

Returns:

A Series whose index is the original column names and whose values is the memory usage of each column in bytes.

Return type:

Series

See also

numpy.ndarray.nbytes

Total bytes consumed by the elements of an ndarray.

Series.memory_usage

Bytes consumed by a Series.

Categorical

Memory-efficient array for string values with many repeated values.

DataFrame.info

Concise summary of a DataFrame.

Notes

See the Frequently Asked Questions for more details.

Examples

>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t))
...              for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()
   int64  float64            complex128  object  bool
0      1      1.0              1.0+0.0j       1  True
1      1      1.0              1.0+0.0j       1  True
2      1      1.0              1.0+0.0j       1  True
3      1      1.0              1.0+0.0j       1  True
4      1      1.0              1.0+0.0j       1  True
>>> df.memory_usage()
Index           128
int64         40000
float64       40000
complex128    80000
object        40000
bool           5000
dtype: int64
>>> df.memory_usage(index=False)
int64         40000
float64       40000
complex128    80000
object        40000
bool           5000
dtype: int64

The memory footprint of object dtype columns is ignored by default:

>>> df.memory_usage(deep=True)
Index            128
int64          40000
float64        40000
complex128     80000
object        180000
bool            5000
dtype: int64

Use a Categorical for efficient storage of an object-dtype column with many repeated values.

>>> df['object'].astype('category').memory_usage(deep=True)
5244
merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

Merge DataFrame or named Series objects with a database-style join.

A named Series object is treated as a DataFrame with a single named column.

The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.

Warning

If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results.

Parameters:
  • right (DataFrame or named Series) – Object to merge with.

  • how ({'left', 'right', 'outer', 'inner', 'cross'}, default 'inner') –

    Type of merge to be performed.

    • left: use only keys from left frame, similar to a SQL left outer join; preserve key order.

    • right: use only keys from right frame, similar to a SQL right outer join; preserve key order.

    • outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.

    • inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.

    • cross: creates the cartesian product from both frames, preserves the order of the left keys.

      New in version 1.2.0.

  • on (label or list) – Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

  • left_on (label or list, or array-like) – Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns.

  • right_on (label or list, or array-like) – Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns.

  • left_index (bool, default False) – Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels.

  • right_index (bool, default False) – Use the index from the right DataFrame as the join key. Same caveats as left_index.

  • sort (bool, default False) – Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword).

  • suffixes (list-like, default is ("_x", "_y")) – A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None.

  • copy (bool, default True) – If False, avoid copy if possible.

  • indicator (bool or str, default False) – If True, adds a column to the output DataFrame called “_merge” with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of “left_only” for observations whose merge key only appears in the left DataFrame, “right_only” for observations whose merge key only appears in the right DataFrame, and “both” if the observation’s merge key is found in both DataFrames.

  • validate (str, optional) –

    If specified, checks if merge is of specified type.

    • ”one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.

    • ”one_to_many” or “1:m”: check if merge keys are unique in left dataset.

    • ”many_to_one” or “m:1”: check if merge keys are unique in right dataset.

    • ”many_to_many” or “m:m”: allowed, but does not result in checks.

Returns:

A DataFrame of the two merged objects.

Return type:

DataFrame

See also

merge_ordered

Merge with optional filling/interpolation.

merge_asof

Merge on nearest keys.

DataFrame.join

Similar method using indices.

Notes

Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0

Examples

>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
...                     'value': [1, 2, 3, 5]})
>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
...                     'value': [5, 6, 7, 8]})
>>> df1
    lkey value
0   foo      1
1   bar      2
2   baz      3
3   foo      5
>>> df2
    rkey value
0   foo      5
1   bar      6
2   baz      7
3   foo      8

Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended.

>>> df1.merge(df2, left_on='lkey', right_on='rkey')
  lkey  value_x rkey  value_y
0  foo        1  foo        5
1  foo        1  foo        8
2  foo        5  foo        5
3  foo        5  foo        8
4  bar        2  bar        6
5  baz        3  baz        7

Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey',
...           suffixes=('_left', '_right'))
  lkey  value_left rkey  value_right
0  foo           1  foo            5
1  foo           1  foo            8
2  foo           5  foo            5
3  foo           5  foo            8
4  bar           2  bar            6
5  baz           3  baz            7

Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
Traceback (most recent call last):
...
ValueError: columns overlap but no suffix specified:
    Index(['value'], dtype='object')
>>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
>>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})
>>> df1
      a  b
0   foo  1
1   bar  2
>>> df2
      a  c
0   foo  3
1   baz  4
>>> df1.merge(df2, how='inner', on='a')
      a  b  c
0   foo  1  3
>>> df1.merge(df2, how='left', on='a')
      a  b  c
0   foo  1  3.0
1   bar  2  NaN
>>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
>>> df2 = pd.DataFrame({'right': [7, 8]})
>>> df1
    left
0   foo
1   bar
>>> df2
    right
0   7
1   8
>>> df1.merge(df2, how='cross')
   left  right
0   foo      7
1   foo      8
2   bar      7
3   bar      8
min(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return the minimum of the values over the requested axis.

If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64
>>> s.min()
0
mod(other, axis='columns', level=None, fill_value=None)

Get Modulo of dataframe and other, element-wise (binary operator mod).

Equivalent to dataframe % other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmod.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
mode(axis=0, numeric_only=False, dropna=True)

Get the mode(s) of each element along the selected axis.

The mode of a set of values is the value that appears most often. It can be multiple values.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) –

    The axis to iterate over while searching for the mode:

    • 0 or ‘index’ : get mode of each column

    • 1 or ‘columns’ : get mode of each row.

  • numeric_only (bool, default False) – If True, only apply to numeric columns.

  • dropna (bool, default True) – Don’t consider counts of NaN/NaT.

Returns:

The modes of each column or row.

Return type:

DataFrame

See also

Series.mode

Return the highest frequency value in a Series.

Series.value_counts

Return the counts of values in a Series.

Examples

>>> df = pd.DataFrame([('bird', 2, 2),
...                    ('mammal', 4, np.nan),
...                    ('arthropod', 8, 0),
...                    ('bird', 2, np.nan)],
...                   index=('falcon', 'horse', 'spider', 'ostrich'),
...                   columns=('species', 'legs', 'wings'))
>>> df
           species  legs  wings
falcon        bird     2    2.0
horse       mammal     4    NaN
spider   arthropod     8    0.0
ostrich       bird     2    NaN

By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of species and legs contains NaN.

>>> df.mode()
  species  legs  wings
0    bird   2.0    0.0
1     NaN   NaN    2.0

Setting dropna=False NaN values are considered and they can be the mode (like for wings).

>>> df.mode(dropna=False)
  species  legs  wings
0    bird     2    NaN

Setting numeric_only=True, only the mode of numeric columns is computed, and columns of other types are ignored.

>>> df.mode(numeric_only=True)
   legs  wings
0   2.0    0.0
1   NaN    2.0

To compute the mode over columns and not rows, use the axis parameter:

>>> df.mode(axis='columns', numeric_only=True)
           0    1
falcon   2.0  NaN
horse    4.0  NaN
spider   0.0  8.0
ostrich  2.0  NaN
mul(other, axis='columns', level=None, fill_value=None)

Get Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
multiply(other, axis='columns', level=None, fill_value=None)

Get Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
ne(other, axis='columns', level=None)

Get Not equal to of dataframe and other, element-wise (binary operator ne).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.

Parameters:
  • other (scalar, sequence, Series, or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

Returns:

Result of the comparison.

Return type:

DataFrame of bool

See also

DataFrame.eq

Compare DataFrames for equality elementwise.

DataFrame.ne

Compare DataFrames for inequality elementwise.

DataFrame.le

Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt

Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge

Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt

Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False
>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must match the number elements in other:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150
>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225
>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False
nlargest(n, columns, keep='first')

Return the first n rows ordered by columns in descending order.

Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n), but more performant.

Parameters:
  • n (int) – Number of rows to return.

  • columns (label or list of labels) – Column label(s) to order by.

  • keep ({'first', 'last', 'all'}, default 'first') –

    Where there are duplicate values:

    • first : prioritize the first occurrence(s)

    • last : prioritize the last occurrence(s)

    • all : do not drop any duplicates, even it means selecting more than n items.

Returns:

The first n rows ordered by the given columns in descending order.

Return type:

DataFrame

See also

DataFrame.nsmallest

Return the first n rows ordered by columns in ascending order.

DataFrame.sort_values

Sort DataFrame by the values.

DataFrame.head

Return the first n rows without re-ordering.

Notes

This function cannot be used with all column types. For example, when specifying columns with object or category dtypes, TypeError is raised.

Examples

>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
...                                   434000, 434000, 337000, 11300,
...                                   11300, 11300],
...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
...                            17036, 182, 38, 311],
...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
...                                "IS", "NR", "TV", "AI"]},
...                   index=["Italy", "France", "Malta",
...                          "Maldives", "Brunei", "Iceland",
...                          "Nauru", "Tuvalu", "Anguilla"])
>>> df
          population      GDP alpha-2
Italy       59000000  1937894      IT
France      65000000  2583560      FR
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN
Iceland       337000    17036      IS
Nauru          11300      182      NR
Tuvalu         11300       38      TV
Anguilla       11300      311      AI

In the following example, we will use nlargest to select the three rows having the largest values in column “population”.

>>> df.nlargest(3, 'population')
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Malta       434000    12011      MT

When using keep='last', ties are resolved in reverse order:

>>> df.nlargest(3, 'population', keep='last')
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Brunei      434000    12128      BN

When using keep='all', all duplicate items are maintained:

>>> df.nlargest(3, 'population', keep='all')
          population      GDP alpha-2
France      65000000  2583560      FR
Italy       59000000  1937894      IT
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN

To order by the largest values in column “population” and then “GDP”, we can specify multiple columns like in the next example.

>>> df.nlargest(3, ['population', 'GDP'])
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Brunei      434000    12128      BN
notna()

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

Returns:

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

Return type:

DataFrame

See also

DataFrame.notnull

Alias of notna.

DataFrame.isna

Boolean inverse of notna.

DataFrame.dropna

Omit axes labels with missing values.

notna

Top-level notna.

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.notna()
0     True
1     True
2    False
dtype: bool
notnull()

DataFrame.notnull is an alias for DataFrame.notna.

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

Returns:

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

Return type:

DataFrame

See also

DataFrame.notnull

Alias of notna.

DataFrame.isna

Boolean inverse of notna.

DataFrame.dropna

Omit axes labels with missing values.

notna

Top-level notna.

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.notna()
0     True
1     True
2    False
dtype: bool
nsmallest(n, columns, keep='first')

Return the first n rows ordered by columns in ascending order.

Return the first n rows with the smallest values in columns, in ascending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=True).head(n), but more performant.

Parameters:
  • n (int) – Number of items to retrieve.

  • columns (list or str) – Column name or names to order by.

  • keep ({'first', 'last', 'all'}, default 'first') –

    Where there are duplicate values:

    • first : take the first occurrence.

    • last : take the last occurrence.

    • all : do not drop any duplicates, even it means selecting more than n items.

Return type:

DataFrame

See also

DataFrame.nlargest

Return the first n rows ordered by columns in descending order.

DataFrame.sort_values

Sort DataFrame by the values.

DataFrame.head

Return the first n rows without re-ordering.

Examples

>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
...                                   434000, 434000, 337000, 337000,
...                                   11300, 11300],
...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
...                            17036, 182, 38, 311],
...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
...                                "IS", "NR", "TV", "AI"]},
...                   index=["Italy", "France", "Malta",
...                          "Maldives", "Brunei", "Iceland",
...                          "Nauru", "Tuvalu", "Anguilla"])
>>> df
          population      GDP alpha-2
Italy       59000000  1937894      IT
France      65000000  2583560      FR
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN
Iceland       337000    17036      IS
Nauru         337000      182      NR
Tuvalu         11300       38      TV
Anguilla       11300      311      AI

In the following example, we will use nsmallest to select the three rows having the smallest values in column “population”.

>>> df.nsmallest(3, 'population')
          population    GDP alpha-2
Tuvalu         11300     38      TV
Anguilla       11300    311      AI
Iceland       337000  17036      IS

When using keep='last', ties are resolved in reverse order:

>>> df.nsmallest(3, 'population', keep='last')
          population  GDP alpha-2
Anguilla       11300  311      AI
Tuvalu         11300   38      TV
Nauru         337000  182      NR

When using keep='all', all duplicate items are maintained:

>>> df.nsmallest(3, 'population', keep='all')
          population    GDP alpha-2
Tuvalu         11300     38      TV
Anguilla       11300    311      AI
Iceland       337000  17036      IS
Nauru         337000    182      NR

To order by the smallest values in column “population” and then “GDP”, we can specify multiple columns like in the next example.

>>> df.nsmallest(3, ['population', 'GDP'])
          population  GDP alpha-2
Tuvalu         11300   38      TV
Anguilla       11300  311      AI
Nauru         337000  182      NR
nunique(axis=0, dropna=True)

Count number of distinct elements in specified axis.

Return Series with number of distinct elements. Can ignore NaN values.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

  • dropna (bool, default True) – Don’t include NaN in the counts.

Return type:

Series

See also

Series.nunique

Method nunique for Series.

DataFrame.count

Count non-NA cells for each column or row.

Examples

>>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]})
>>> df.nunique()
A    3
B    2
dtype: int64
>>> df.nunique(axis=1)
0    1
1    2
2    2
dtype: int64
pad(*, axis=None, inplace=False, limit=None, downcast=None)

Synonym for DataFrame.fillna() with method='ffill'.

Returns:

Object with missing values filled or None if inplace=True.

Return type:

Series/DataFrame or None

Parameters:
  • self (NDFrameT) –

  • axis (Union[None, str, int]) –

  • inplace (bool) –

  • limit (None | int) –

  • downcast (dict | None) –

pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)

Percentage change between the current and a prior element.

Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements.

Parameters:
  • periods (int, default 1) – Periods to shift for forming percent change.

  • fill_method (str, default 'pad') – How to handle NAs before computing percent changes.

  • limit (int, default None) – The number of consecutive NAs to fill before stopping.

  • freq (DateOffset, timedelta, or str, optional) – Increment to use from time series API (e.g. ‘M’ or BDay()).

  • **kwargs – Additional keyword arguments are passed into DataFrame.shift or Series.shift.

  • self (NDFrameT) –

Returns:

chg – The same type as the calling object.

Return type:

Series or DataFrame

See also

Series.diff

Compute the difference of two elements in a Series.

DataFrame.diff

Compute the difference of two elements in a DataFrame.

Series.shift

Shift the index by some number of periods.

DataFrame.shift

Shift the index by some number of periods.

Examples

Series

>>> s = pd.Series([90, 91, 85])
>>> s
0    90
1    91
2    85
dtype: int64
>>> s.pct_change()
0         NaN
1    0.011111
2   -0.065934
dtype: float64
>>> s.pct_change(periods=2)
0         NaN
1         NaN
2   -0.055556
dtype: float64

See the percentage change in a Series where filling NAs with last valid observation forward to next valid.

>>> s = pd.Series([90, 91, None, 85])
>>> s
0    90.0
1    91.0
2     NaN
3    85.0
dtype: float64
>>> s.pct_change(fill_method='ffill')
0         NaN
1    0.011111
2    0.000000
3   -0.065934
dtype: float64

DataFrame

Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.

>>> df = pd.DataFrame({
...     'FR': [4.0405, 4.0963, 4.3149],
...     'GR': [1.7246, 1.7482, 1.8519],
...     'IT': [804.74, 810.01, 860.13]},
...     index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df
                FR      GR      IT
1980-01-01  4.0405  1.7246  804.74
1980-02-01  4.0963  1.7482  810.01
1980-03-01  4.3149  1.8519  860.13
>>> df.pct_change()
                  FR        GR        IT
1980-01-01       NaN       NaN       NaN
1980-02-01  0.013810  0.013684  0.006549
1980-03-01  0.053365  0.059318  0.061876

Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns.

>>> df = pd.DataFrame({
...     '2016': [1769950, 30586265],
...     '2015': [1500923, 40912316],
...     '2014': [1371819, 41403351]},
...     index=['GOOG', 'APPL'])
>>> df
          2016      2015      2014
GOOG   1769950   1500923   1371819
APPL  30586265  40912316  41403351
>>> df.pct_change(axis='columns', periods=-1)
          2016      2015  2014
GOOG  0.179241  0.094112   NaN
APPL -0.252395 -0.011860   NaN
pipe(func, *args, **kwargs)

Apply chainable functions that expect Series or DataFrames.

Parameters:
  • func (function) – Function to apply to the Series/DataFrame. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the Series/DataFrame.

  • args (iterable, optional) – Positional arguments passed into func.

  • kwargs (mapping, optional) – A dictionary of keyword arguments passed into func.

Returns:

object

Return type:

the return type of func.

See also

DataFrame.apply

Apply a function along input axis of DataFrame.

DataFrame.applymap

Apply a function elementwise on a whole DataFrame.

Series.map

Apply a mapping correspondence on a Series.

Notes

Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing

>>> func(g(h(df), arg1=a), arg2=b, arg3=c)  

You can write

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe(func, arg2=b, arg3=c)
... )  

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe((func, 'arg2'), arg1=a, arg3=c)
...  )  
pivot(*, index=None, columns=None, values=None)

Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping.

Parameters:
  • index (str or object or a list of str, optional) –

    Column to use to make new frame’s index. If None, uses existing index.

    Changed in version 1.1.0: Also accept list of index names.

  • columns (str or object or a list of str) –

    Column to use to make new frame’s columns.

    Changed in version 1.1.0: Also accept list of columns names.

  • values (str, object or a list of the previous, optional) – Column(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.

Returns:

Returns reshaped DataFrame.

Return type:

DataFrame

Raises:

ValueError: – When there are any index, columns combinations with multiple values. DataFrame.pivot_table when you need to aggregate.

See also

DataFrame.pivot_table

Generalization of pivot that can handle duplicate values for one index/column pair.

DataFrame.unstack

Pivot based on the index values instead of a column.

wide_to_long

Wide panel to long format. Less flexible but more user-friendly than melt.

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods.

Reference the user guide for more examples.

Examples

>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
...                            'two'],
...                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
...                    'baz': [1, 2, 3, 4, 5, 6],
...                    'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
    foo   bar  baz  zoo
0   one   A    1    x
1   one   B    2    y
2   one   C    3    z
3   two   A    4    q
4   two   B    5    w
5   two   C    6    t
>>> df.pivot(index='foo', columns='bar', values='baz')
bar  A   B   C
foo
one  1   2   3
two  4   5   6
>>> df.pivot(index='foo', columns='bar')['baz']
bar  A   B   C
foo
one  1   2   3
two  4   5   6
>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
      baz       zoo
bar   A  B  C   A  B  C
foo
one   1  2  3   x  y  z
two   4  5  6   q  w  t

You could also assign a list of column names or a list of index names.

>>> df = pd.DataFrame({
...        "lev1": [1, 1, 1, 2, 2, 2],
...        "lev2": [1, 1, 2, 1, 1, 2],
...        "lev3": [1, 2, 1, 2, 1, 2],
...        "lev4": [1, 2, 3, 4, 5, 6],
...        "values": [0, 1, 2, 3, 4, 5]})
>>> df
    lev1 lev2 lev3 lev4 values
0   1    1    1    1    0
1   1    1    2    2    1
2   1    2    1    3    2
3   2    1    2    4    3
4   2    1    1    5    4
5   2    2    2    6    5
>>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values")
lev2    1         2
lev3    1    2    1    2
lev1
1     0.0  1.0  2.0  NaN
2     4.0  3.0  NaN  5.0
>>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values")
      lev3    1    2
lev1  lev2
   1     1  0.0  1.0
         2  2.0  NaN
   2     1  4.0  3.0
         2  NaN  5.0

A ValueError is raised if there are any duplicates.

>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
...                    "bar": ['A', 'A', 'B', 'C'],
...                    "baz": [1, 2, 3, 4]})
>>> df
   foo bar  baz
0  one   A    1
1  one   A    2
2  two   B    3
3  two   C    4

Notice that the first two rows are the same for our index and columns arguments.

>>> df.pivot(index='foo', columns='bar', values='baz')
Traceback (most recent call last):
   ...
ValueError: Index contains duplicate entries, cannot reshape
pivot_table(values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True)

Create a spreadsheet-style pivot table as a DataFrame.

The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.

Parameters:
  • values (column to aggregate, optional) –

  • index (column, Grouper, array, or list of the previous) – If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.

  • columns (column, Grouper, array, or list of the previous) – If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.

  • aggfunc (function, list of functions, dict, default numpy.mean) – If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions.

  • fill_value (scalar, default None) – Value to replace missing values with (in the resulting pivot table, after aggregation).

  • margins (bool, default False) – Add all row / columns (e.g. for subtotal / grand totals).

  • dropna (bool, default True) – Do not include columns whose entries are all NaN. If True, rows with a NaN value in any column will be omitted before computing margins.

  • margins_name (str, default 'All') – Name of the row / column that will contain the totals when margins is True.

  • observed (bool, default False) –

    This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.

    Changed in version 0.25.0.

  • sort (bool, default True) –

    Specifies if the result should be sorted.

    New in version 1.3.0.

Returns:

An Excel style pivot table.

Return type:

DataFrame

See also

DataFrame.pivot

Pivot without aggregation that can handle non-numeric data.

DataFrame.melt

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

wide_to_long

Wide panel to long format. Less flexible but more user-friendly than melt.

Notes

Reference the user guide for more examples.

Examples

>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
...                          "bar", "bar", "bar", "bar"],
...                    "B": ["one", "one", "one", "two", "two",
...                          "one", "one", "two", "two"],
...                    "C": ["small", "large", "large", "small",
...                          "small", "large", "small", "small",
...                          "large"],
...                    "D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
...                    "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
>>> df
     A    B      C  D  E
0  foo  one  small  1  2
1  foo  one  large  2  4
2  foo  one  large  2  5
3  foo  two  small  3  5
4  foo  two  small  3  6
5  bar  one  large  4  6
6  bar  one  small  5  8
7  bar  two  small  6  9
8  bar  two  large  7  9

This first example aggregates values by taking the sum.

>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
...                     columns=['C'], aggfunc=np.sum)
>>> table
C        large  small
A   B
bar one    4.0    5.0
    two    7.0    6.0
foo one    4.0    1.0
    two    NaN    6.0

We can also fill missing values using the fill_value parameter.

>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
...                     columns=['C'], aggfunc=np.sum, fill_value=0)
>>> table
C        large  small
A   B
bar one      4      5
    two      7      6
foo one      4      1
    two      0      6

The next example aggregates by taking the mean across multiple columns.

>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
...                     aggfunc={'D': np.mean,
...                              'E': np.mean})
>>> table
                D         E
A   C
bar large  5.500000  7.500000
    small  5.500000  8.500000
foo large  2.000000  4.500000
    small  2.333333  4.333333

We can also calculate multiple types of aggregations for any given value column.

>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
...                     aggfunc={'D': np.mean,
...                              'E': [min, max, np.mean]})
>>> table
                  D   E
               mean max      mean  min
A   C
bar large  5.500000   9  7.500000    6
    small  5.500000   9  8.500000    8
foo large  2.000000   5  4.500000    4
    small  2.333333   6  4.333333    2
pop(item)

Return item and drop from frame. Raise KeyError if not found.

Parameters:

item (label) – Label of column to be popped.

Return type:

Series

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
...                    ('parrot', 'bird', 24.0),
...                    ('lion', 'mammal', 80.5),
...                    ('monkey', 'mammal', np.nan)],
...                   columns=('name', 'class', 'max_speed'))
>>> df
     name   class  max_speed
0  falcon    bird      389.0
1  parrot    bird       24.0
2    lion  mammal       80.5
3  monkey  mammal        NaN
>>> df.pop('class')
0      bird
1      bird
2    mammal
3    mammal
Name: class, dtype: object
>>> df
     name  max_speed
0  falcon      389.0
1  parrot       24.0
2    lion       80.5
3  monkey        NaN
pow(other, axis='columns', level=None, fill_value=None)

Get Exponential power of dataframe and other, element-wise (binary operator pow).

Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
prod(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)

Return the product of the values over the requested axis.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([], dtype="float64").prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([], dtype="float64").prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0
>>> pd.Series([np.nan]).prod(min_count=1)
nan
product(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)

Return the product of the values over the requested axis.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([], dtype="float64").prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([], dtype="float64").prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0
>>> pd.Series([np.nan]).prod(min_count=1)
nan
quantile(q=0.5, axis=0, numeric_only=_NoDefault.no_default, interpolation='linear', method='single')

Return values at the given quantile over requested axis.

Parameters:
  • q (float or array-like, default 0.5 (50% quantile)) – Value between 0 <= q <= 1, the quantile(s) to compute.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Equals 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

  • numeric_only (bool, default True) –

    If False, the quantile of datetime and timedelta data will be computed as well.

    Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas.

  • interpolation ({'linear', 'lower', 'higher', 'midpoint', 'nearest'}) –

    This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

    • linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.

    • lower: i.

    • higher: j.

    • nearest: i or j whichever is nearest.

    • midpoint: (i + j) / 2.

  • method ({'single', 'table'}, default 'single') – Whether to compute quantiles per-column (‘single’) or over all columns (‘table’). When ‘table’, the only allowed interpolation methods are ‘nearest’, ‘lower’, and ‘higher’.

Returns:

If q is an array, a DataFrame will be returned where the

index is q, the columns are the columns of self, and the values are the quantiles.

If q is a float, a Series will be returned where the

index is the columns of self and the values are the quantiles.

Return type:

Series or DataFrame

See also

core.window.rolling.Rolling.quantile

Rolling quantile.

numpy.percentile

Numpy function to compute the percentile.

Examples

>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
...                   columns=['a', 'b'])
>>> df.quantile(.1)
a    1.3
b    3.7
Name: 0.1, dtype: float64
>>> df.quantile([.1, .5])
       a     b
0.1  1.3   3.7
0.5  2.5  55.0

Specifying method=’table’ will compute the quantile over all columns.

>>> df.quantile(.1, method="table", interpolation="nearest")
a    1
b    1
Name: 0.1, dtype: int64
>>> df.quantile([.1, .5], method="table", interpolation="nearest")
     a    b
0.1  1    1
0.5  3  100

Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.

>>> df = pd.DataFrame({'A': [1, 2],
...                    'B': [pd.Timestamp('2010'),
...                          pd.Timestamp('2011')],
...                    'C': [pd.Timedelta('1 days'),
...                          pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A                    1.5
B    2010-07-02 12:00:00
C        1 days 12:00:00
Name: 0.5, dtype: object
query(expr, *, inplace=False, **kwargs)

Query the columns of a DataFrame with a boolean expression.

Parameters:
  • expr (str) –

    The query string to evaluate.

    You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b.

    You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named “Area (cm^2)” would be referenced as `Area (cm^2)`). Column names which are Python keywords (like “list”, “for”, “import”, etc) cannot be used.

    For example, if one of your columns is called a a and you want to sum it with b, your query should be `a a` + b.

    New in version 0.25.0: Backtick quoting introduced.

    New in version 1.0.0: Expanding functionality of backtick quoting for more than only spaces.

  • inplace (bool) – Whether to modify the DataFrame rather than creating a new one.

  • **kwargs – See the documentation for eval() for complete details on the keyword arguments accepted by DataFrame.query().

Returns:

DataFrame resulting from the provided query expression or None if inplace=True.

Return type:

DataFrame or None

See also

eval

Evaluate a string describing operations on DataFrame columns.

DataFrame.eval

Evaluate a string describing operations on DataFrame columns.

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__().

This method uses the top-level eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine='python' to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers.

For further details and examples see the query documentation in indexing.

Backtick quoted variables

Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems.

During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped).

In a special case, quotes that make a pair around a backtick can confuse the parser. For example, `it's` > `that's` will raise an error, as it forms a quoted string ('s > `that') with a backtick inside.

See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in pandas.core.computation.parsing.

Examples

>>> df = pd.DataFrame({'A': range(1, 6),
...                    'B': range(10, 0, -2),
...                    'C C': range(10, 5, -1)})
>>> df
   A   B  C C
0  1  10   10
1  2   8    9
2  3   6    8
3  4   4    7
4  5   2    6
>>> df.query('A > B')
   A  B  C C
4  5  2    6

The previous expression is equivalent to

>>> df[df.A > df.B]
   A  B  C C
4  5  2    6

For columns with spaces in their name, you can use backtick quoting.

>>> df.query('B == `C C`')
   A   B  C C
0  1  10   10

The previous expression is equivalent to

>>> df[df.B == df['C C']]
   A   B  C C
0  1  10   10
radd(other, axis='columns', level=None, fill_value=None)

Get Addition of dataframe and other, element-wise (binary operator radd).

Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, add.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rank(axis=0, method='average', numeric_only=_NoDefault.no_default, na_option='keep', ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Index to direct ranking. For Series this parameter is unused and defaults to 0.

  • method ({'average', 'min', 'max', 'first', 'dense'}, default 'average') –

    How to rank the group of records that have the same value (i.e. ties):

    • average: average rank of the group

    • min: lowest rank in the group

    • max: highest rank in the group

    • first: ranks assigned in order they appear in the array

    • dense: like ‘min’, but rank always increases by 1 between groups.

  • numeric_only (bool, optional) – For DataFrame objects, rank only numeric columns if set to True.

  • na_option ({'keep', 'top', 'bottom'}, default 'keep') –

    How to rank NaN values:

    • keep: assign NaN rank to NaN values

    • top: assign lowest rank to NaN values

    • bottom: assign highest rank to NaN values

  • ascending (bool, default True) – Whether or not the elements should be ranked in ascending order.

  • pct (bool, default False) – Whether or not to display the returned rankings in percentile form.

  • self (NDFrameT) –

Returns:

Return a Series or DataFrame with data ranks as values.

Return type:

same type as caller

See also

core.groupby.GroupBy.rank

Rank of values within each group.

Examples

>>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog',
...                                    'spider', 'snake'],
...                         'Number_legs': [4, 2, 4, 8, np.nan]})
>>> df
    Animal  Number_legs
0      cat          4.0
1  penguin          2.0
2      dog          4.0
3   spider          8.0
4    snake          NaN

Ties are assigned the mean of the ranks (by default) for the group.

>>> s = pd.Series(range(5), index=list("abcde"))
>>> s["d"] = s["b"]
>>> s.rank()
a    1.0
b    2.5
c    4.0
d    2.5
e    5.0
dtype: float64

The following example shows how the method behaves with the above parameters:

  • default_rank: this is the default behaviour obtained without using any parameter.

  • max_rank: setting method = 'max' the records that have the same values are ranked using the highest rank (e.g.: since ‘cat’ and ‘dog’ are both in the 2nd and 3rd position, rank 3 is assigned.)

  • NA_bottom: choosing na_option = 'bottom', if there are records with NaN values they are placed at the bottom of the ranking.

  • pct_rank: when setting pct = True, the ranking is expressed as percentile rank.

>>> df['default_rank'] = df['Number_legs'].rank()
>>> df['max_rank'] = df['Number_legs'].rank(method='max')
>>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom')
>>> df['pct_rank'] = df['Number_legs'].rank(pct=True)
>>> df
    Animal  Number_legs  default_rank  max_rank  NA_bottom  pct_rank
0      cat          4.0           2.5       3.0        2.5     0.625
1  penguin          2.0           1.0       1.0        1.0     0.250
2      dog          4.0           2.5       3.0        2.5     0.625
3   spider          8.0           4.0       4.0        4.0     1.000
4    snake          NaN           NaN       NaN        5.0       NaN
rdiv(other, axis='columns', level=None, fill_value=None)

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=None, level=None, fill_value=nan, limit=None, tolerance=None)

Conform Series/DataFrame to new index with optional filling logic.

Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

Parameters:
  • axes (keywords for) – New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data.

  • method ({None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}) –

    Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

    • None (default): don’t fill gaps

    • pad / ffill: Propagate last valid observation forward to next valid.

    • backfill / bfill: Use next valid observation to fill gap.

    • nearest: Use nearest valid observations to fill gap.

  • copy (bool, default True) – Return a new object, even if the passed indexes are the same.

  • level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (scalar, default np.NaN) – Value to use for missing values. Defaults to NaN, but can be any “compatible” value.

  • limit (int, default None) – Maximum number of consecutive elements to forward or backward fill.

  • tolerance (optional) –

    Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.

    Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.

Return type:

Series/DataFrame with changed index.

See also

DataFrame.set_index

Set row labels.

DataFrame.reset_index

Remove row labels or move them to new columns.

DataFrame.reindex_like

Change to same indices as other DataFrame.

Examples

DataFrame.reindex supports two calling conventions

  • (index=index_labels, columns=column_labels, ...)

  • (labels, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

Create a dataframe with some fictional data.

>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301],
...                   'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
...                   index=index)
>>> df
           http_status  response_time
Firefox            200           0.04
Chrome             200           0.02
Safari             404           0.07
IE10               404           0.08
Konqueror          301           1.00

Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

>>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
...              'Chrome']
>>> df.reindex(new_index)
               http_status  response_time
Safari               404.0           0.07
Iceweasel              NaN            NaN
Comodo Dragon          NaN            NaN
IE10                 404.0           0.08
Chrome               200.0           0.02

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the NaN values.

>>> df.reindex(new_index, fill_value=0)
               http_status  response_time
Safari                 404           0.07
Iceweasel                0           0.00
Comodo Dragon            0           0.00
IE10                   404           0.08
Chrome                 200           0.02
>>> df.reindex(new_index, fill_value='missing')
              http_status response_time
Safari                404          0.07
Iceweasel         missing       missing
Comodo Dragon     missing       missing
IE10                  404          0.08
Chrome                200          0.02

We can also reindex the columns.

>>> df.reindex(columns=['http_status', 'user_agent'])
           http_status  user_agent
Firefox            200         NaN
Chrome             200         NaN
Safari             404         NaN
IE10               404         NaN
Konqueror          301         NaN

Or we can use “axis-style” keyword arguments

>>> df.reindex(['http_status', 'user_agent'], axis="columns")
           http_status  user_agent
Firefox            200         NaN
Chrome             200         NaN
Safari             404         NaN
IE10               404         NaN
Konqueror          301         NaN

To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
...                    index=date_index)
>>> df2
            prices
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0

Suppose we decide to expand the dataframe to cover a wider date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
            prices
2009-12-29     NaN
2009-12-30     NaN
2009-12-31     NaN
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0
2010-01-07     NaN

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to back-propagate the last valid value to fill the NaN values, pass bfill as an argument to the method keyword.

>>> df2.reindex(date_index2, method='bfill')
            prices
2009-12-29   100.0
2009-12-30   100.0
2009-12-31   100.0
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0
2010-01-07     NaN

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the fillna() method.

See the user guide for more.

reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Return an object with matching indices as other object.

Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

Parameters:
  • other (Object of the same data type) – Its row and column indices are used to define the new indices of this object.

  • method ({None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}) –

    Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

    • None (default): don’t fill gaps

    • pad / ffill: propagate last valid observation forward to next valid

    • backfill / bfill: use next valid observation to fill gap

    • nearest: use nearest valid observations to fill gap.

  • copy (bool, default True) – Return a new object, even if the passed indexes are the same.

  • limit (int, default None) – Maximum number of consecutive labels to fill for inexact matches.

  • tolerance (optional) –

    Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance.

    Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.

  • self (NDFrameT) –

Returns:

Same type as caller, but with changed indices on each axis.

Return type:

Series or DataFrame

See also

DataFrame.set_index

Set row labels.

DataFrame.reset_index

Remove row labels or move them to new columns.

DataFrame.reindex

Change to new indices or expand indices.

Notes

Same as calling .reindex(index=other.index, columns=other.columns,...).

Examples

>>> df1 = pd.DataFrame([[24.3, 75.7, 'high'],
...                     [31, 87.8, 'high'],
...                     [22, 71.6, 'medium'],
...                     [35, 95, 'medium']],
...                    columns=['temp_celsius', 'temp_fahrenheit',
...                             'windspeed'],
...                    index=pd.date_range(start='2014-02-12',
...                                        end='2014-02-15', freq='D'))
>>> df1
            temp_celsius  temp_fahrenheit windspeed
2014-02-12          24.3             75.7      high
2014-02-13          31.0             87.8      high
2014-02-14          22.0             71.6    medium
2014-02-15          35.0             95.0    medium
>>> df2 = pd.DataFrame([[28, 'low'],
...                     [30, 'low'],
...                     [35.1, 'medium']],
...                    columns=['temp_celsius', 'windspeed'],
...                    index=pd.DatetimeIndex(['2014-02-12', '2014-02-13',
...                                            '2014-02-15']))
>>> df2
            temp_celsius windspeed
2014-02-12          28.0       low
2014-02-13          30.0       low
2014-02-15          35.1    medium
>>> df2.reindex_like(df1)
            temp_celsius  temp_fahrenheit windspeed
2014-02-12          28.0              NaN       low
2014-02-13          30.0              NaN       low
2014-02-14           NaN              NaN       NaN
2014-02-15          35.1              NaN    medium
rename(mapper=None, *, index=None, columns=None, axis=None, copy=None, inplace=False, level=None, errors='ignore')

Alter axes labels.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.

See the user guide for more.

Parameters:
  • mapper (dict-like or function) – Dict-like or function transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index and columns.

  • index (dict-like or function) – Alternative to specifying axis (mapper, axis=0 is equivalent to index=mapper).

  • columns (dict-like or function) – Alternative to specifying axis (mapper, axis=1 is equivalent to columns=mapper).

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.

  • copy (bool, default True) – Also copy underlying data.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored.

  • level (int or level name, default None) – In case of a MultiIndex, only rename labels in the specified level.

  • errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.

Returns:

DataFrame with the renamed axis labels or None if inplace=True.

Return type:

DataFrame or None

Raises:

KeyError – If any of the labels is not found in the selected axis and “errors=’raise’”.

See also

DataFrame.rename_axis

Set the name of the axis.

Examples

DataFrame.rename supports two calling conventions

  • (index=index_mapper, columns=columns_mapper, ...)

  • (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

Rename columns using a mapping:

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(columns={"A": "a", "B": "c"})
   a  c
0  1  4
1  2  5
2  3  6

Rename index using a mapping:

>>> df.rename(index={0: "x", 1: "y", 2: "z"})
   A  B
x  1  4
y  2  5
z  3  6

Cast index labels to a different type:

>>> df.index
RangeIndex(start=0, stop=3, step=1)
>>> df.rename(index=str).index
Index(['0', '1', '2'], dtype='object')
>>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise")
Traceback (most recent call last):
KeyError: ['C'] not found in axis

Using axis-style parameters:

>>> df.rename(str.lower, axis='columns')
   a  b
0  1  4
1  2  5
2  3  6
>>> df.rename({1: 2, 2: 4}, axis='index')
   A  B
0  1  4
2  2  5
4  3  6
rename_axis(mapper=_NoDefault.no_default, *, inplace=False, **kwargs)

Set the name of the axis for the index or columns.

Parameters:
  • mapper (scalar, list-like, optional) – Value to set the axis name attribute.

  • index (scalar, list-like, dict-like or function, optional) –

    A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the columns parameter is not allowed if the object is a Series. This parameter only apply for DataFrame type objects.

    Use either mapper and axis to specify the axis to target with mapper, or index and/or columns.

  • columns (scalar, list-like, dict-like or function, optional) –

    A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the columns parameter is not allowed if the object is a Series. This parameter only apply for DataFrame type objects.

    Use either mapper and axis to specify the axis to target with mapper, or index and/or columns.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to rename. For Series this parameter is unused and defaults to 0.

  • copy (bool, default True) – Also copy underlying data.

  • inplace (bool, default False) – Modifies the object directly, instead of creating a new Series or DataFrame.

  • self (NDFrameT) –

Returns:

The same type as the caller or None if inplace=True.

Return type:

Series, DataFrame, or None

See also

Series.rename

Alter Series index labels or name.

DataFrame.rename

Alter DataFrame index labels or name.

Index.rename

Set new names on index.

Notes

DataFrame.rename_axis supports two calling conventions

  • (index=index_mapper, columns=columns_mapper, ...)

  • (mapper, axis={'index', 'columns'}, ...)

The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter copy is ignored.

The second calling convention will modify the names of the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels.

We highly recommend using keyword arguments to clarify your intent.

Examples

Series

>>> s = pd.Series(["dog", "cat", "monkey"])
>>> s
0       dog
1       cat
2    monkey
dtype: object
>>> s.rename_axis("animal")
animal
0    dog
1    cat
2    monkey
dtype: object

DataFrame

>>> df = pd.DataFrame({"num_legs": [4, 4, 2],
...                    "num_arms": [0, 0, 2]},
...                   ["dog", "cat", "monkey"])
>>> df
        num_legs  num_arms
dog            4         0
cat            4         0
monkey         2         2
>>> df = df.rename_axis("animal")
>>> df
        num_legs  num_arms
animal
dog            4         0
cat            4         0
monkey         2         2
>>> df = df.rename_axis("limbs", axis="columns")
>>> df
limbs   num_legs  num_arms
animal
dog            4         0
cat            4         0
monkey         2         2

MultiIndex

>>> df.index = pd.MultiIndex.from_product([['mammal'],
...                                        ['dog', 'cat', 'monkey']],
...                                       names=['type', 'name'])
>>> df
limbs          num_legs  num_arms
type   name
mammal dog            4         0
       cat            4         0
       monkey         2         2
>>> df.rename_axis(index={'type': 'class'})
limbs          num_legs  num_arms
class  name
mammal dog            4         0
       cat            4         0
       monkey         2         2
>>> df.rename_axis(columns=str.upper)
LIMBS          num_legs  num_arms
type   name
mammal dog            4         0
       cat            4         0
       monkey         2         2
reorder_levels(order, axis=0)

Rearrange index levels using input order. May not drop or duplicate levels.

Parameters:
  • order (list of int or list of str) – List representing new level order. Reference level by number (position) or by key (label).

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Where to reorder levels.

Return type:

DataFrame

Examples

>>> data = {
...     "class": ["Mammals", "Mammals", "Reptiles"],
...     "diet": ["Omnivore", "Carnivore", "Carnivore"],
...     "species": ["Humans", "Dogs", "Snakes"],
... }
>>> df = pd.DataFrame(data, columns=["class", "diet", "species"])
>>> df = df.set_index(["class", "diet"])
>>> df
                                  species
class      diet
Mammals    Omnivore                Humans
           Carnivore                 Dogs
Reptiles   Carnivore               Snakes

Let’s reorder the levels of the index:

>>> df.reorder_levels(["diet", "class"])
                                  species
diet      class
Omnivore  Mammals                  Humans
Carnivore Mammals                    Dogs
          Reptiles                 Snakes
replace(to_replace=None, value=_NoDefault.no_default, *, inplace=False, limit=None, regex=False, method=_NoDefault.no_default)

Replace values given in to_replace with value.

Values of the DataFrame are replaced with other values dynamically.

This differs from updating with .loc or .iloc, which require you to specify a location to update with some value.

Parameters:
  • to_replace (str, regex, list, dict, Series, int, float, or None) –

    How to find the values that will be replaced.

    • numeric, str or regex:

      • numeric: numeric values equal to to_replace will be replaced with value

      • str: string exactly matching to_replace will be replaced with value

      • regex: regexs matching to_replace will be replaced with value

    • list of str, regex, or numeric:

      • First, if to_replace and value are both lists, they must be the same length.

      • Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.

      • str, regex and numeric rules apply as above.

    • dict:

      • Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way, the optional value parameter should not be given.

      • For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not be None in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

      • For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The optional value parameter should not be specified to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.

    • None:

      • This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

    See the examples section for examples of each of these.

  • value (scalar, dict, list, str, regex, default None) – Value to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.

  • limit (int, default None) – Maximum size gap to forward or backward fill.

  • regex (bool or same types as to_replace, default False) – Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None.

  • method ({'pad', 'ffill', 'bfill'}) –

    The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None.

    Changed in version 0.23.0: Added to DataFrame.

Returns:

Object after replacement.

Return type:

DataFrame

Raises:
  • AssertionError

    • If regex is not a bool and to_replace is not None.

  • TypeError

    • If to_replace is not a scalar, array-like, dict, or None * If to_replace is a dict and value is not a list, dict, ndarray, or Series * If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced

  • ValueError

    • If a list or an ndarray is passed to to_replace and value but they are not the same length.

See also

DataFrame.fillna

Fill NA values.

DataFrame.where

Replace values based on boolean condition.

Series.str.replace

Simple string replacement.

Notes

  • Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

  • Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

  • This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

  • When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter.

Examples

Scalar `to_replace` and `value`

>>> s = pd.Series([1, 2, 3, 4, 5])
>>> s.replace(1, 5)
0    5
1    2
2    3
3    4
4    5
dtype: int64
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
...                    'B': [5, 6, 7, 8, 9],
...                    'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)
    A  B  C
0  5  5  a
1  1  6  b
2  2  7  c
3  3  8  d
4  4  9  e

List-like `to_replace`

>>> df.replace([0, 1, 2, 3], 4)
    A  B  C
0  4  5  a
1  4  6  b
2  4  7  c
3  4  8  d
4  4  9  e
>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
    A  B  C
0  4  5  a
1  3  6  b
2  2  7  c
3  1  8  d
4  4  9  e
>>> s.replace([1, 2], method='bfill')
0    3
1    3
2    3
3    4
4    5
dtype: int64

dict-like `to_replace`

>>> df.replace({0: 10, 1: 100})
        A  B  C
0   10  5  a
1  100  6  b
2    2  7  c
3    3  8  d
4    4  9  e
>>> df.replace({'A': 0, 'B': 5}, 100)
        A    B  C
0  100  100  a
1    1    6  b
2    2    7  c
3    3    8  d
4    4    9  e
>>> df.replace({'A': {0: 100, 4: 400}})
        A  B  C
0  100  5  a
1    1  6  b
2    2  7  c
3    3  8  d
4  400  9  e

Regular expression `to_replace`

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
...                    'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
        A    B
0   new  abc
1   foo  new
2  bait  xyz
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
        A    B
0   new  abc
1   foo  bar
2  bait  xyz
>>> df.replace(regex=r'^ba.$', value='new')
        A    B
0   new  abc
1   foo  new
2  bait  xyz
>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
        A    B
0   new  abc
1   xyz  new
2  bait  xyz
>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
        A    B
0   new  abc
1   new  new
2  bait  xyz

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to understand the peculiarities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None}, value=None, method=None):

>>> s.replace({'a': None})
0      10
1    None
2    None
3       b
4    None
dtype: object

When value is not explicitly passed and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case.

>>> s.replace('a')
0    10
1    10
2    10
3     b
4     b
dtype: object

On the other hand, if None is explicitly passed for value, it will be respected:

>>> s.replace('a', None)
0      10
1    None
2    None
3       b
4    None
dtype: object

Changed in version 1.4.0: Previously the explicit None was silently ignored.

resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start_day', offset=None, group_keys=_NoDefault.no_default)

Resample time-series data.

Convenience method for frequency conversion and resampling of time series. The object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or the caller must pass the label of a datetime-like series/index to the on/level keyword parameter.

Parameters:
  • rule (DateOffset, Timedelta or str) – The offset string or object representing target conversion.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Which axis to use for up- or down-sampling. For Series this parameter is unused and defaults to 0. Must be DatetimeIndex, TimedeltaIndex or PeriodIndex.

  • closed ({'right', 'left'}, default None) – Which side of bin interval is closed. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.

  • label ({'right', 'left'}, default None) – Which bin edge label to label bucket with. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.

  • convention ({'start', 'end', 's', 'e'}, default 'start') – For PeriodIndex only, controls whether to use the start or end of rule.

  • kind ({'timestamp', 'period'}, optional, default None) – Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert it to a PeriodIndex. By default the input representation is retained.

  • loffset (timedelta, default None) –

    Adjust the resampled time labels.

    Deprecated since version 1.1.0: You should add the loffset to the df.index after the resample. See below.

  • base (int, default 0) –

    For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0.

    Deprecated since version 1.1.0: The new arguments that you should use are ‘offset’ or ‘origin’.

  • on (str, optional) – For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

  • level (str or int, optional) – For a MultiIndex, level (name or number) to use for resampling. level must be datetime-like.

  • origin (Timestamp or str, default 'start_day') –

    The timestamp on which to adjust the grouping. The timezone of origin must match the timezone of the index. If string, must be one of the following:

    • ’epoch’: origin is 1970-01-01

    • ’start’: origin is the first value of the timeseries

    • ’start_day’: origin is the first day at midnight of the timeseries

    New in version 1.1.0.

    • ’end’: origin is the last value of the timeseries

    • ’end_day’: origin is the ceiling midnight of the last day

    New in version 1.3.0.

  • offset (Timedelta or str, default is None) –

    An offset timedelta added to the origin.

    New in version 1.1.0.

  • group_keys (bool, optional) –

    Whether to include the group keys in the result index when using .apply() on the resampled object. Not specifying group_keys will retain values-dependent behavior from pandas 1.4 and earlier (see pandas 1.5.0 Release notes for examples). In a future version of pandas, the behavior will default to the same as specifying group_keys=False.

    New in version 1.5.0.

Returns:

Resampler object.

Return type:

pandas.core.Resampler

See also

Series.resample

Resample a Series.

DataFrame.resample

Resample a DataFrame.

groupby

Group DataFrame by mapping, function, label, or list of labels.

asfreq

Reindex a DataFrame with the given frequency without grouping.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum()
2000-01-01 00:00:00     3
2000-01-01 00:03:00    12
2000-01-01 00:06:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00     3
2000-01-01 00:06:00    12
2000-01-01 00:09:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00     0
2000-01-01 00:03:00     6
2000-01-01 00:06:00    15
2000-01-01 00:09:00    15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5]   # Select first 5 rows
2000-01-01 00:00:00   0.0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00   1.0
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00   2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the ffill method.

>>> series.resample('30S').ffill()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    0
2000-01-01 00:01:00    1
2000-01-01 00:01:30    1
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    1
2000-01-01 00:01:00    1
2000-01-01 00:01:30    2
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(arraylike):
...     return np.sum(arraylike) + 5
...
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00     8
2000-01-01 00:03:00    17
2000-01-01 00:06:00    26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or end of rule.

Resample a year by quarter using ‘start’ convention. Values are assigned to the first quarter of the period.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
...                                             freq='A',
...                                             periods=2))
>>> s
2012    1
2013    2
Freq: A-DEC, dtype: int64
>>> s.resample('Q', convention='start').asfreq()
2012Q1    1.0
2012Q2    NaN
2012Q3    NaN
2012Q4    NaN
2013Q1    2.0
2013Q2    NaN
2013Q3    NaN
2013Q4    NaN
Freq: Q-DEC, dtype: float64

Resample quarters by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01',
...                                                   freq='Q',
...                                                   periods=4))
>>> q
2018Q1    1
2018Q2    2
2018Q3    3
2018Q4    4
Freq: Q-DEC, dtype: int64
>>> q.resample('M', convention='end').asfreq()
2018-03    1.0
2018-04    NaN
2018-05    NaN
2018-06    2.0
2018-07    NaN
2018-08    NaN
2018-09    3.0
2018-10    NaN
2018-11    NaN
2018-12    4.0
Freq: M, dtype: float64

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resampling.

>>> d = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
...      'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df = pd.DataFrame(d)
>>> df['week_starting'] = pd.date_range('01/01/2018',
...                                     periods=8,
...                                     freq='W')
>>> df
   price  volume week_starting
0     10      50    2018-01-07
1     11      60    2018-01-14
2      9      40    2018-01-21
3     13     100    2018-01-28
4     14      50    2018-02-04
5     18     100    2018-02-11
6     17      40    2018-02-18
7     19      50    2018-02-25
>>> df.resample('M', on='week_starting').mean()
               price  volume
week_starting
2018-01-31     10.75    62.5
2018-02-28     17.00    60.0

For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling needs to take place.

>>> days = pd.date_range('1/1/2000', periods=4, freq='D')
>>> d2 = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
...       'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df2 = pd.DataFrame(
...     d2,
...     index=pd.MultiIndex.from_product(
...         [days, ['morning', 'afternoon']]
...     )
... )
>>> df2
                      price  volume
2000-01-01 morning       10      50
           afternoon     11      60
2000-01-02 morning        9      40
           afternoon     13     100
2000-01-03 morning       14      50
           afternoon     18     100
2000-01-04 morning       17      40
           afternoon     19      50
>>> df2.resample('D', level=0).sum()
            price  volume
2000-01-01     21     110
2000-01-02     22     140
2000-01-03     32     150
2000-01-04     36      90

If you want to adjust the start of the bins based on a fixed timestamp:

>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
>>> rng = pd.date_range(start, end, freq='7min')
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
>>> ts
2000-10-01 23:30:00     0
2000-10-01 23:37:00     3
2000-10-01 23:44:00     6
2000-10-01 23:51:00     9
2000-10-01 23:58:00    12
2000-10-02 00:05:00    15
2000-10-02 00:12:00    18
2000-10-02 00:19:00    21
2000-10-02 00:26:00    24
Freq: 7T, dtype: int64
>>> ts.resample('17min').sum()
2000-10-01 23:14:00     0
2000-10-01 23:31:00     9
2000-10-01 23:48:00    21
2000-10-02 00:05:00    54
2000-10-02 00:22:00    24
Freq: 17T, dtype: int64
>>> ts.resample('17min', origin='epoch').sum()
2000-10-01 23:18:00     0
2000-10-01 23:35:00    18
2000-10-01 23:52:00    27
2000-10-02 00:09:00    39
2000-10-02 00:26:00    24
Freq: 17T, dtype: int64
>>> ts.resample('17min', origin='2000-01-01').sum()
2000-10-01 23:24:00     3
2000-10-01 23:41:00    15
2000-10-01 23:58:00    45
2000-10-02 00:15:00    45
Freq: 17T, dtype: int64

If you want to adjust the start of the bins with an offset Timedelta, the two following lines are equivalent:

>>> ts.resample('17min', origin='start').sum()
2000-10-01 23:30:00     9
2000-10-01 23:47:00    21
2000-10-02 00:04:00    54
2000-10-02 00:21:00    24
Freq: 17T, dtype: int64
>>> ts.resample('17min', offset='23h30min').sum()
2000-10-01 23:30:00     9
2000-10-01 23:47:00    21
2000-10-02 00:04:00    54
2000-10-02 00:21:00    24
Freq: 17T, dtype: int64

If you want to take the largest Timestamp as the end of the bins:

>>> ts.resample('17min', origin='end').sum()
2000-10-01 23:35:00     0
2000-10-01 23:52:00    18
2000-10-02 00:09:00    27
2000-10-02 00:26:00    63
Freq: 17T, dtype: int64

In contrast with the start_day, you can use end_day to take the ceiling midnight of the largest Timestamp as the end of the bins and drop the bins not containing data:

>>> ts.resample('17min', origin='end_day').sum()
2000-10-01 23:38:00     3
2000-10-01 23:55:00    15
2000-10-02 00:12:00    45
2000-10-02 00:29:00    45
Freq: 17T, dtype: int64

To replace the use of the deprecated base argument, you can now use offset, in this example it is equivalent to have base=2:

>>> ts.resample('17min', offset='2min').sum()
2000-10-01 23:16:00     0
2000-10-01 23:33:00     9
2000-10-01 23:50:00    36
2000-10-02 00:07:00    39
2000-10-02 00:24:00    24
Freq: 17T, dtype: int64

To replace the use of the deprecated loffset argument:

>>> from pandas.tseries.frequencies import to_offset
>>> loffset = '19min'
>>> ts_out = ts.resample('17min').sum()
>>> ts_out.index = ts_out.index + to_offset(loffset)
>>> ts_out
2000-10-01 23:33:00     0
2000-10-01 23:50:00     9
2000-10-02 00:07:00    21
2000-10-02 00:24:00    54
2000-10-02 00:41:00    24
Freq: 17T, dtype: int64
reset_index(level=None, *, drop=False, inplace=False, col_level=0, col_fill='', allow_duplicates=_NoDefault.no_default, names=None)

Reset the index, or a level of it.

Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels.

Parameters:
  • level (int, str, tuple, or list, default None) – Only remove the given levels from the index. Removes all levels by default.

  • drop (bool, default False) – Do not try to insert index into dataframe columns. This resets the index to the default integer index.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.

  • col_level (int or str, default 0) – If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

  • col_fill (object, default '') – If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

  • allow_duplicates (bool, optional, default lib.no_default) –

    Allow duplicate column labels to be created.

    New in version 1.5.0.

  • names (int, str or 1-dimensional list, default None) –

    Using the given string, rename the DataFrame column which contains the index data. If the DataFrame has a MultiIndex, this has to be a list or tuple with length equal to the number of levels.

    New in version 1.5.0.

Returns:

DataFrame with the new index or None if inplace=True.

Return type:

DataFrame or None

See also

DataFrame.set_index

Opposite of reset_index.

DataFrame.reindex

Change to new indices or expand indices.

DataFrame.reindex_like

Change to same indices as other DataFrame.

Examples

>>> df = pd.DataFrame([('bird', 389.0),
...                    ('bird', 24.0),
...                    ('mammal', 80.5),
...                    ('mammal', np.nan)],
...                   index=['falcon', 'parrot', 'lion', 'monkey'],
...                   columns=('class', 'max_speed'))
>>> df
         class  max_speed
falcon    bird      389.0
parrot    bird       24.0
lion    mammal       80.5
monkey  mammal        NaN

When we reset the index, the old index is added as a column, and a new sequential index is used:

>>> df.reset_index()
    index   class  max_speed
0  falcon    bird      389.0
1  parrot    bird       24.0
2    lion  mammal       80.5
3  monkey  mammal        NaN

We can use the drop parameter to avoid the old index being added as a column:

>>> df.reset_index(drop=True)
    class  max_speed
0    bird      389.0
1    bird       24.0
2  mammal       80.5
3  mammal        NaN

You can also use reset_index with MultiIndex.

>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
...                                    ('bird', 'parrot'),
...                                    ('mammal', 'lion'),
...                                    ('mammal', 'monkey')],
...                                   names=['class', 'name'])
>>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
...                                      ('species', 'type')])
>>> df = pd.DataFrame([(389.0, 'fly'),
...                    ( 24.0, 'fly'),
...                    ( 80.5, 'run'),
...                    (np.nan, 'jump')],
...                   index=index,
...                   columns=columns)
>>> df
               speed species
                 max    type
class  name
bird   falcon  389.0     fly
       parrot   24.0     fly
mammal lion     80.5     run
       monkey    NaN    jump

Using the names parameter, choose a name for the index column:

>>> df.reset_index(names=['classes', 'names'])
  classes   names  speed species
                     max    type
0    bird  falcon  389.0     fly
1    bird  parrot   24.0     fly
2  mammal    lion   80.5     run
3  mammal  monkey    NaN    jump

If the index has multiple levels, we can reset a subset of them:

>>> df.reset_index(level='class')
         class  speed species
                  max    type
name
falcon    bird  389.0     fly
parrot    bird   24.0     fly
lion    mammal   80.5     run
monkey  mammal    NaN    jump

If we are not dropping the index, by default, it is placed in the top level. We can place it in another level:

>>> df.reset_index(level='class', col_level=1)
                speed species
         class    max    type
name
falcon    bird  389.0     fly
parrot    bird   24.0     fly
lion    mammal   80.5     run
monkey  mammal    NaN    jump

When the index is inserted under another level, we can specify under which one with the parameter col_fill:

>>> df.reset_index(level='class', col_level=1, col_fill='species')
              species  speed species
                class    max    type
name
falcon           bird  389.0     fly
parrot           bird   24.0     fly
lion           mammal   80.5     run
monkey         mammal    NaN    jump

If we specify a nonexistent level for col_fill, it is created:

>>> df.reset_index(level='class', col_level=1, col_fill='genus')
                genus  speed species
                class    max    type
name
falcon           bird  389.0     fly
parrot           bird   24.0     fly
lion           mammal   80.5     run
monkey         mammal    NaN    jump
rfloordiv(other, axis='columns', level=None, fill_value=None)

Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).

Equivalent to other // dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, floordiv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rmod(other, axis='columns', level=None, fill_value=None)

Get Modulo of dataframe and other, element-wise (binary operator rmod).

Equivalent to other % dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mod.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rmul(other, axis='columns', level=None, fill_value=None)

Get Multiplication of dataframe and other, element-wise (binary operator rmul).

Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mul.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None, step=None, method='single')

Provide rolling window calculations.

Parameters:
  • window (int, offset, or BaseIndexer subclass) –

    Size of the moving window.

    If an integer, the fixed number of observations used for each window.

    If an offset, the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. To learn more about the offsets & frequency strings, please see this link.

    If a BaseIndexer subclass, the window boundaries based on the defined get_window_bounds method. Additional rolling keyword arguments, namely min_periods, center, closed and step will be passed to get_window_bounds.

  • min_periods (int, default None) –

    Minimum number of observations in window required to have a value; otherwise, result is np.nan.

    For a window that is specified by an offset, min_periods will default to 1.

    For a window that is specified by an integer, min_periods will default to the size of the window.

  • center (bool, default False) –

    If False, set the window labels as the right edge of the window index.

    If True, set the window labels as the center of the window index.

  • win_type (str, default None) –

    If None, all points are evenly weighted.

    If a string, it must be a valid scipy.signal window function.

    Certain Scipy window types require additional parameters to be passed in the aggregation function. The additional parameters must match the keywords specified in the Scipy window type method signature.

  • on (str, optional) –

    For a DataFrame, a column label or Index level on which to calculate the rolling window, rather than the DataFrame’s index.

    Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window.

  • axis (int or str, default 0) –

    If 0 or 'index', roll across the rows.

    If 1 or 'columns', roll across the columns.

    For Series this parameter is unused and defaults to 0.

  • closed (str, default None) –

    If 'right', the first point in the window is excluded from calculations.

    If 'left', the last point in the window is excluded from calculations.

    If 'both', the no points in the window are excluded from calculations.

    If 'neither', the first and last points in the window are excluded from calculations.

    Default None ('right').

    Changed in version 1.2.0: The closed parameter with fixed windows is now supported.

  • step (int, default None) –

    New in version 1.5.0.

    Evaluate the window at every step result, equivalent to slicing as [::step]. window must be an integer. Using a step argument other than None or 1 will produce a result with a different shape than the input.

  • method (str {'single', 'table'}, default 'single') –

    New in version 1.3.0.

    Execute the rolling operation per single column or row ('single') or over the entire object ('table').

    This argument is only implemented when specifying engine='numba' in the method call.

Returns:

  • Window subclass if a win_type is passed

  • Rolling subclass if win_type is not passed

Return type:

Window | Rolling

See also

expanding

Provides expanding transformations.

ewm

Provides exponential weighted functions.

Notes

See Windowing Operations for further usage details and examples.

Examples

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

window

Rolling sum with a window length of 2 observations.

>>> df.rolling(2).sum()
     B
0  NaN
1  1.0
2  3.0
3  NaN
4  NaN

Rolling sum with a window span of 2 seconds.

>>> df_time = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
...                        index = [pd.Timestamp('20130101 09:00:00'),
...                                 pd.Timestamp('20130101 09:00:02'),
...                                 pd.Timestamp('20130101 09:00:03'),
...                                 pd.Timestamp('20130101 09:00:05'),
...                                 pd.Timestamp('20130101 09:00:06')])
>>> df_time
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0
>>> df_time.rolling('2s').sum()
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0

Rolling sum with forward looking windows with 2 observations.

>>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2)
>>> df.rolling(window=indexer, min_periods=1).sum()
     B
0  1.0
1  3.0
2  2.0
3  4.0
4  4.0

min_periods

Rolling sum with a window length of 2 observations, but only needs a minimum of 1 observation to calculate a value.

>>> df.rolling(2, min_periods=1).sum()
     B
0  0.0
1  1.0
2  3.0
3  2.0
4  4.0

center

Rolling sum with the result assigned to the center of the window index.

>>> df.rolling(3, min_periods=1, center=True).sum()
     B
0  1.0
1  3.0
2  3.0
3  6.0
4  4.0
>>> df.rolling(3, min_periods=1, center=False).sum()
     B
0  0.0
1  1.0
2  3.0
3  3.0
4  6.0

step

Rolling sum with a window length of 2 observations, minimum of 1 observation to calculate a value, and a step of 2.

>>> df.rolling(2, min_periods=1, step=2).sum()
     B
0  0.0
2  3.0
4  4.0

win_type

Rolling sum with a window length of 2, using the Scipy 'gaussian' window type. std is required in the aggregation function.

>>> df.rolling(2, win_type='gaussian').sum(std=3)
          B
0       NaN
1  0.986207
2  2.958621
3       NaN
4       NaN
round(decimals=0, *args, **kwargs)

Round a DataFrame to a variable number of decimal places.

Parameters:
  • decimals (int, dict, Series) – Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a Series. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.

  • *args – Additional keywords have no effect but might be accepted for compatibility with numpy.

  • **kwargs – Additional keywords have no effect but might be accepted for compatibility with numpy.

Returns:

A DataFrame with the affected columns rounded to the specified number of decimal places.

Return type:

DataFrame

See also

numpy.around

Round a numpy array to the given number of decimals.

Series.round

Round a Series to the given number of decimals.

Examples

>>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)],
...                   columns=['dogs', 'cats'])
>>> df
    dogs  cats
0  0.21  0.32
1  0.01  0.67
2  0.66  0.03
3  0.21  0.18

By providing an integer each column is rounded to the same number of decimal places

>>> df.round(1)
    dogs  cats
0   0.2   0.3
1   0.0   0.7
2   0.7   0.0
3   0.2   0.2

With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value

>>> df.round({'dogs': 1, 'cats': 0})
    dogs  cats
0   0.2   0.0
1   0.0   1.0
2   0.7   0.0
3   0.2   0.0

Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value

>>> decimals = pd.Series([0, 1], index=['cats', 'dogs'])
>>> df.round(decimals)
    dogs  cats
0   0.2   0.0
1   0.0   1.0
2   0.7   0.0
3   0.2   0.0
rpow(other, axis='columns', level=None, fill_value=None)

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rsub(other, axis='columns', level=None, fill_value=None)

Get Subtraction of dataframe and other, element-wise (binary operator rsub).

Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, sub.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
rtruediv(other, axis='columns', level=None, fill_value=None)

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Parameters:
  • n (int, optional) – Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

  • frac (float, optional) – Fraction of axis items to return. Cannot be used with n.

  • replace (bool, default False) – Allow or disallow sampling of the same row more than once.

  • weights (str or ndarray-like, optional) – Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed.

  • random_state (int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional) –

    If int, array-like, or BitGenerator, seed for random number generator. If np.random.RandomState or np.random.Generator, use as given.

    Changed in version 1.1.0: array-like and BitGenerator object now passed to np.random.RandomState() as seed

    Changed in version 1.4.0: np.random.Generator objects now accepted

  • axis ({0 or ‘index’, 1 or ‘columns’, None}, default None) – Axis to sample. Accepts axis number or name. Default is stat axis for given data type. For Series this parameter is unused and defaults to None.

  • ignore_index (bool, default False) –

    If True, the resulting index will be labeled 0, 1, …, n - 1.

    New in version 1.3.0.

  • self (NDFrameT) –

Returns:

A new object of same type as caller containing n items randomly sampled from the caller object.

Return type:

Series or DataFrame

See also

DataFrameGroupBy.sample

Generates random samples from each group of a DataFrame object.

SeriesGroupBy.sample

Generates random samples from each group of a Series object.

numpy.random.choice

Generates a random sample from a given 1-D numpy array.

Notes

If frac > 1, replacement should be set to True.

Examples

>>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
...                    'num_wings': [2, 0, 0, 0],
...                    'num_specimen_seen': [10, 2, 1, 8]},
...                   index=['falcon', 'dog', 'spider', 'fish'])
>>> df
        num_legs  num_wings  num_specimen_seen
falcon         2          2                 10
dog            4          0                  2
spider         8          0                  1
fish           0          0                  8

Extract 3 random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples.

>>> df['num_legs'].sample(n=3, random_state=1)
fish      0
spider    8
falcon    2
Name: num_legs, dtype: int64

A random 50% sample of the DataFrame with replacement:

>>> df.sample(frac=0.5, replace=True, random_state=1)
      num_legs  num_wings  num_specimen_seen
dog          4          0                  2
fish         0          0                  8

An upsample sample of the DataFrame with replacement: Note that replace parameter has to be True for frac parameter > 1.

>>> df.sample(frac=2, replace=True, random_state=1)
        num_legs  num_wings  num_specimen_seen
dog            4          0                  2
fish           0          0                  8
falcon         2          2                 10
falcon         2          2                 10
fish           0          0                  8
dog            4          0                  2
fish           0          0                  8
dog            4          0                  2

Using a DataFrame column as weights. Rows with larger value in the num_specimen_seen column are more likely to be sampled.

>>> df.sample(n=2, weights='num_specimen_seen', random_state=1)
        num_legs  num_wings  num_specimen_seen
falcon         2          2                 10
fish           0          0                  8
select_dtypes(include=None, exclude=None)

Return a subset of the DataFrame’s columns based on the column dtypes.

Parameters:
  • include (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.

  • exclude (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.

Returns:

The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Return type:

DataFrame

Raises:

ValueError

  • If both of include and exclude are empty * If include and exclude have overlapping elements * If any kind of string dtype is passed in.

See also

DataFrame.dtypes

Return Series with the data type of each column.

Notes

  • To select all numeric types, use np.number or 'number'

  • To select strings you must use the object dtype, but note that this will return all object dtype columns

  • See the numpy dtype hierarchy

  • To select datetimes, use np.datetime64, 'datetime' or 'datetime64'

  • To select timedeltas, use np.timedelta64, 'timedelta' or 'timedelta64'

  • To select Pandas categorical dtypes, use 'category'

  • To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0) or 'datetime64[ns, tz]'

Examples

>>> df = pd.DataFrame({'a': [1, 2] * 3,
...                    'b': [True, False] * 3,
...                    'c': [1.0, 2.0] * 3})
>>> df
        a      b  c
0       1   True  1.0
1       2  False  2.0
2       1   True  1.0
3       2  False  2.0
4       1   True  1.0
5       2  False  2.0
>>> df.select_dtypes(include='bool')
   b
0  True
1  False
2  True
3  False
4  True
5  False
>>> df.select_dtypes(include=['float64'])
   c
0  1.0
1  2.0
2  1.0
3  2.0
4  1.0
5  2.0
>>> df.select_dtypes(exclude=['int64'])
       b    c
0   True  1.0
1  False  2.0
2   True  1.0
3  False  2.0
4   True  1.0
5  False  2.0
sem(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
  • axis ({index (0), columns (1)}) – For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

Return type:

Series or DataFrame (if level specified)

set_axis(labels, *, axis=0, inplace=_NoDefault.no_default, copy=_NoDefault.no_default)

Assign desired index to given axis.

Indexes for column or row labels can be changed by assigning a list-like or Index.

Parameters:
  • labels (list-like, Index) – The values for the new index.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to update. The value 0 identifies the rows. For Series this parameter is unused and defaults to 0.

  • inplace (bool, default False) –

    Whether to return a new DataFrame instance.

    Deprecated since version 1.5.0.

  • copy (bool, default True) –

    Whether to make a copy of the underlying data.

    New in version 1.5.0.

Returns:

renamed – An object of type DataFrame or None if inplace=True.

Return type:

DataFrame or None

See also

DataFrame.rename_axis

Alter the name of the index or columns. Examples ——– >>> df = pd.DataFrame({“A”: [1, 2, 3], “B”: [4, 5, 6]}) Change the row labels. >>> df.set_axis([‘a’, ‘b’, ‘c’], axis=’index’) A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis([‘I’, ‘II’], axis=’columns’) I II 0 1 4 1 2 5 2 3 6 Now, update the labels without copying the underlying data. >>> df.set_axis([‘i’, ‘ii’], axis=’columns’, copy=False) i ii 0 1 4 1 2 5 2 3 6

set_flags(*, copy=False, allows_duplicate_labels=None)

Return a new object with updated flags.

Parameters:
  • allows_duplicate_labels (bool, optional) – Whether the returned object allows duplicate labels.

  • self (NDFrameT) –

  • copy (bool) –

Returns:

The same type as the caller.

Return type:

Series or DataFrame

See also

DataFrame.attrs

Global metadata applying to this dataset.

DataFrame.flags

Global flags applying to this object.

Notes

This method returns a new object that’s a view on the same data as the input. Mutating the input or the output values will be reflected in the other.

This method is intended to be used in method chains.

“Flags” differ from “metadata”. Flags reflect properties of the pandas object (the Series or DataFrame). Metadata refer to properties of the dataset, and should be stored in DataFrame.attrs.

Examples

>>> df = pd.DataFrame({"A": [1, 2]})
>>> df.flags.allows_duplicate_labels
True
>>> df2 = df.set_flags(allows_duplicate_labels=False)
>>> df2.flags.allows_duplicate_labels
False
set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)[source]

Set the DataFrame index using existing columns.

Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it.

Parameters:
  • keys

    label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses Series, Index, np.ndarray,

    and instances of Iterator.

  • drop (bool) – bool, default True. Delete columns to be used as the new index.

  • append (bool) – bool, default False. Whether to append columns to existing index.

  • inplace (bool) – bool, default False. Whether to modify the DataFrame rather than creating a new one.

  • verify_integrity (bool) – bool, default False. Check the new index for duplicates. Otherwise, defer the check until necessary. Setting to False will improve the performance of this method.

Returns:

DataFrame or None. Changed row labels or None if inplace=True.

Return type:

Optional[DataFrame]

shift(periods=1, freq=None, axis=0, fill_value=_NoDefault.no_default)

Shift index by desired number of periods with an optional time freq.

When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq. freq can be inferred when specified as “infer” as long as either freq or inferred_freq attribute is set in the index.

Parameters:
  • periods (int) – Number of periods to shift. Can be positive or negative.

  • freq (DateOffset, tseries.offsets, timedelta, or str, optional) – Offset to use from the tseries module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. If freq is specified as “infer” then it will be inferred from the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown.

  • axis ({0 or 'index', 1 or 'columns', None}, default None) – Shift direction. For Series this parameter is unused and defaults to 0.

  • fill_value (object, optional) –

    The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data, np.nan is used. For datetime, timedelta, or period data, etc. NaT is used. For extension dtypes, self.dtype.na_value is used.

    Changed in version 1.1.0.

Returns:

Copy of input object, shifted.

Return type:

DataFrame

See also

Index.shift

Shift values of Index.

DatetimeIndex.shift

Shift values of DatetimeIndex.

PeriodIndex.shift

Shift values of PeriodIndex.

tshift

Shift the time index, using the index’s frequency if available.

Examples

>>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45],
...                    "Col2": [13, 23, 18, 33, 48],
...                    "Col3": [17, 27, 22, 37, 52]},
...                   index=pd.date_range("2020-01-01", "2020-01-05"))
>>> df
            Col1  Col2  Col3
2020-01-01    10    13    17
2020-01-02    20    23    27
2020-01-03    15    18    22
2020-01-04    30    33    37
2020-01-05    45    48    52
>>> df.shift(periods=3)
            Col1  Col2  Col3
2020-01-01   NaN   NaN   NaN
2020-01-02   NaN   NaN   NaN
2020-01-03   NaN   NaN   NaN
2020-01-04  10.0  13.0  17.0
2020-01-05  20.0  23.0  27.0
>>> df.shift(periods=1, axis="columns")
            Col1  Col2  Col3
2020-01-01   NaN    10    13
2020-01-02   NaN    20    23
2020-01-03   NaN    15    18
2020-01-04   NaN    30    33
2020-01-05   NaN    45    48
>>> df.shift(periods=3, fill_value=0)
            Col1  Col2  Col3
2020-01-01     0     0     0
2020-01-02     0     0     0
2020-01-03     0     0     0
2020-01-04    10    13    17
2020-01-05    20    23    27
>>> df.shift(periods=3, freq="D")
            Col1  Col2  Col3
2020-01-04    10    13    17
2020-01-05    20    23    27
2020-01-06    15    18    22
2020-01-07    30    33    37
2020-01-08    45    48    52
>>> df.shift(periods=3, freq="infer")
            Col1  Col2  Col3
2020-01-04    10    13    17
2020-01-05    20    23    27
2020-01-06    15    18    22
2020-01-07    30    33    37
2020-01-08    45    48    52
skew(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis.

Normalized by N-1.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

slice_shift(periods=1, axis=0)

Equivalent to shift without copying data.

Deprecated since version 1.2.0: slice_shift is deprecated, use DataFrame/Series.shift instead.

The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters:
  • periods (int) – Number of periods to move, can be positive or negative.

  • axis ({0 or 'index', 1 or 'columns', None}, default 0) – For Series this parameter is unused and defaults to 0.

  • self (NDFrameT) –

Returns:

shifted

Return type:

same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

sort_index(*, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)

Sort object by labels (along an axis).

Returns a new DataFrame sorted by label if inplace argument is False, otherwise updates the original DataFrame and returns None.

Parameters:
  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns.

  • level (int or level name or list of ints or list of level names) – If not None, sort on values in specified index level(s).

  • ascending (bool or list-like of bools, default True) – Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.

  • inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.

  • kind ({'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort') – Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.

  • na_position ({'first', 'last'}, default 'last') – Puts NaNs at the beginning if first; last puts NaNs at the end. Not implemented for MultiIndex.

  • sort_remaining (bool, default True) – If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level.

  • ignore_index (bool, default False) –

    If True, the resulting axis will be labeled 0, 1, …, n - 1.

    New in version 1.0.0.

  • key (callable, optional) –

    If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape. For MultiIndex inputs, the key is applied per level.

    New in version 1.1.0.

Returns:

The original DataFrame sorted by the labels or None if inplace=True.

Return type:

DataFrame or None

See also

Series.sort_index

Sort Series by the index.

DataFrame.sort_values

Sort DataFrame by the value.

Series.sort_values

Sort Series by the value.

Examples

>>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150],
...                   columns=['A'])
>>> df.sort_index()
     A
1    4
29   2
100  1
150  5
234  3

By default, it sorts in ascending order, to sort in descending order, use ascending=False

>>> df.sort_index(ascending=False)
     A
234  3
150  5
100  1
29   2
1    4

A key function can be specified which is applied to the index before sorting. For a MultiIndex this is applied to each level separately.

>>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd'])
>>> df.sort_index(key=lambda x: x.str.lower())
   a
A  1
b  2
C  3
d  4
sort_values(by, *, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)

Sort by the values along either axis.

Parameters:
  • by (str or list of str) –

    Name or list of names to sort by.

    • if axis is 0 or ‘index’ then by may contain index levels and/or column labels.

    • if axis is 1 or ‘columns’ then by may contain column levels and/or index labels.

  • axis (Union[str, int]) –

  • ascending (bool | list[bool] | tuple[bool, ...]) –

  • inplace (bool) –

  • kind (str) –

  • na_position (str) –

  • ignore_index (bool) –

  • key (Optional[Callable[[Series], Union[Series, ExtensionArray, ndarray, Index]]]) –

Return type:

pandas.core.frame.DataFrame | None

axis{0 or ‘index’, 1 or ‘columns’}, default 0

Axis to be sorted.

ascendingbool or list of bool, default True

Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.

inplacebool, default False

If True, perform operation in-place.

kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’

Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.

na_position{‘first’, ‘last’}, default ‘last’

Puts NaNs at the beginning if first; last puts NaNs at the end.

ignore_indexbool, default False

If True, the resulting axis will be labeled 0, 1, …, n - 1.

New in version 1.0.0.

keycallable, optional

Apply the key function to the values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect a Series and return a Series with the same shape as the input. It will be applied to each column in by independently.

New in version 1.1.0.

Returns:

DataFrame with sorted values or None if inplace=True.

Return type:

DataFrame or None

Parameters:
  • by (Union[Hashable, Sequence[Hashable]]) –

  • axis (Union[str, int]) –

  • ascending (bool | list[bool] | tuple[bool, ...]) –

  • inplace (bool) –

  • kind (str) –

  • na_position (str) –

  • ignore_index (bool) –

  • key (Optional[Callable[[Series], Union[Series, ExtensionArray, ndarray, Index]]]) –

See also

DataFrame.sort_index

Sort a DataFrame by the index.

Series.sort_values

Similar method for a Series.

Examples

>>> df = pd.DataFrame({
...     'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
...     'col2': [2, 1, 9, 8, 7, 4],
...     'col3': [0, 1, 9, 4, 2, 3],
...     'col4': ['a', 'B', 'c', 'D', 'e', 'F']
... })
>>> df
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Sort by col1

>>> df.sort_values(by=['col1'])
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort by multiple columns

>>> df.sort_values(by=['col1', 'col2'])
  col1  col2  col3 col4
1    A     1     1    B
0    A     2     0    a
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort Descending

>>> df.sort_values(by='col1', ascending=False)
  col1  col2  col3 col4
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B
3  NaN     8     4    D

Putting NAs first

>>> df.sort_values(by='col1', ascending=False, na_position='first')
  col1  col2  col3 col4
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B

Sorting with a key function

>>> df.sort_values(by='col4', key=lambda col: col.str.lower())
   col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Natural sort with the key argument, using the natsort <https://github.com/SethMMorton/natsort> package.

>>> df = pd.DataFrame({
...    "time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
...    "value": [10, 20, 30, 40, 50]
... })
>>> df
    time  value
0    0hr     10
1  128hr     20
2   72hr     30
3   48hr     40
4   96hr     50
>>> from natsort import index_natsorted
>>> df.sort_values(
...    by="time",
...    key=lambda x: np.argsort(index_natsorted(df["time"]))
... )
    time  value
0    0hr     10
3   48hr     40
2   72hr     30
4   96hr     50
1  128hr     20
squeeze(axis=None)

Squeeze 1 dimensional axis objects into scalars.

Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged.

This method is most useful when you don’t know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call squeeze to ensure you have a Series.

Parameters:

axis ({0 or 'index', 1 or 'columns', None}, default None) – A specific axis to squeeze. By default, all length-1 axes are squeezed. For Series this parameter is unused and defaults to None.

Returns:

The projection after squeezing axis or all the axes.

Return type:

DataFrame, Series, or scalar

See also

Series.iloc

Integer-location based indexing for selecting scalars.

DataFrame.iloc

Integer-location based indexing for selecting Series.

Series.to_frame

Inverse of DataFrame.squeeze for a single-column DataFrame.

Examples

>>> primes = pd.Series([2, 3, 5, 7])

Slicing might produce a Series with a single value:

>>> even_primes = primes[primes % 2 == 0]
>>> even_primes
0    2
dtype: int64
>>> even_primes.squeeze()
2

Squeezing objects with more than one value in every axis does nothing:

>>> odd_primes = primes[primes % 2 == 1]
>>> odd_primes
1    3
2    5
3    7
dtype: int64
>>> odd_primes.squeeze()
1    3
2    5
3    7
dtype: int64

Squeezing is even more effective when used with DataFrames.

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])
>>> df
   a  b
0  1  2
1  3  4

Slicing a single column will produce a DataFrame with the columns having only one value:

>>> df_a = df[['a']]
>>> df_a
   a
0  1
1  3

So the columns can be squeezed down, resulting in a Series:

>>> df_a.squeeze('columns')
0    1
1    3
Name: a, dtype: int64

Slicing a single row from a single column will produce a single scalar DataFrame:

>>> df_0a = df.loc[df.index < 1, ['a']]
>>> df_0a
   a
0  1

Squeezing the rows produces a single scalar Series:

>>> df_0a.squeeze('rows')
a    1
Name: 0, dtype: int64

Squeezing all axes will project directly into a scalar:

>>> df_0a.squeeze()
1
stack(level=-1, dropna=True)

Stack the prescribed level(s) from columns to index.

Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:

  • if the columns have a single level, the output is a Series;

  • if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.

Parameters:
  • level (int, str, list, default -1) – Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels.

  • dropna (bool, default True) – Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section.

Returns:

Stacked dataframe or series.

Return type:

DataFrame or Series

See also

DataFrame.unstack

Unstack prescribed level(s) from index axis onto column axis.

DataFrame.pivot

Reshape dataframe from long format to wide format.

DataFrame.pivot_table

Create a spreadsheet-style pivot table as a DataFrame.

Notes

The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe).

Reference the user guide for more examples.

Examples

Single level columns

>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
...                                     index=['cat', 'dog'],
...                                     columns=['weight', 'height'])

Stacking a dataframe with a single level column axis returns a Series:

>>> df_single_level_cols
     weight height
cat       0      1
dog       2      3
>>> df_single_level_cols.stack()
cat  weight    0
     height    1
dog  weight    2
     height    3
dtype: int64

Multi level columns: simple case

>>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
...                                        ('weight', 'pounds')])
>>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
...                                     index=['cat', 'dog'],
...                                     columns=multicol1)

Stacking a dataframe with a multi-level column axis:

>>> df_multi_level_cols1
     weight
         kg    pounds
cat       1        2
dog       2        4
>>> df_multi_level_cols1.stack()
            weight
cat kg           1
    pounds       2
dog kg           2
    pounds       4

Missing values

>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
...                                        ('height', 'm')])
>>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
...                                     index=['cat', 'dog'],
...                                     columns=multicol2)

It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs:

>>> df_multi_level_cols2
    weight height
        kg      m
cat    1.0    2.0
dog    3.0    4.0
>>> df_multi_level_cols2.stack()
        height  weight
cat kg     NaN     1.0
    m      2.0     NaN
dog kg     NaN     3.0
    m      4.0     NaN

Prescribing the level(s) to be stacked

The first parameter controls which level or levels are stacked:

>>> df_multi_level_cols2.stack(0)
             kg    m
cat height  NaN  2.0
    weight  1.0  NaN
dog height  NaN  4.0
    weight  3.0  NaN
>>> df_multi_level_cols2.stack([0, 1])
cat  height  m     2.0
     weight  kg    1.0
dog  height  m     4.0
     weight  kg    3.0
dtype: float64

Dropping missing values

>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
...                                     index=['cat', 'dog'],
...                                     columns=multicol2)

Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter:

>>> df_multi_level_cols3
    weight height
        kg      m
cat    NaN    1.0
dog    2.0    3.0
>>> df_multi_level_cols3.stack(dropna=False)
        height  weight
cat kg     NaN     NaN
    m      1.0     NaN
dog kg     NaN     2.0
    m      3.0     NaN
>>> df_multi_level_cols3.stack(dropna=True)
        height  weight
cat m      1.0     NaN
dog kg     NaN     2.0
    m      3.0     NaN
std(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)

Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters:
  • axis ({index (0), columns (1)}) – For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

Return type:

Series or DataFrame (if level specified)

Notes

To have the same behaviour as numpy.std, use ddof=0 (instead of the default ddof=1)

Examples

>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
...                   'age': [21, 25, 62, 43],
...                   'height': [1.61, 1.87, 1.49, 2.01]}
...                  ).set_index('person_id')
>>> df
           age  height
person_id
0           21    1.61
1           25    1.87
2           62    1.49
3           43    2.01

The standard deviation of the columns can be found as follows:

>>> df.std()
age       18.786076
height     0.237417

Alternatively, ddof=0 can be set to normalize by N instead of N-1:

>>> df.std(ddof=0)
age       16.269219
height     0.205609
sub(other, axis='columns', level=None, fill_value=None)

Get Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
subtract(other, axis='columns', level=None, fill_value=None)

Get Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
sum(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)

Return the sum of the values over the requested axis.

This is equivalent to the method numpy.sum.

Parameters:
  • axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values when computing the result.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

  • min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

  • **kwargs – Additional keyword arguments to be passed to the function.

Return type:

Series or DataFrame (if level specified)

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64
>>> s.sum()
14

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([], dtype="float64").sum()  # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty series to be NaN, pass min_count=1.

>>> pd.Series([], dtype="float64").sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()
0.0
>>> pd.Series([np.nan]).sum(min_count=1)
nan
swapaxes(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately.

Returns:

y

Return type:

same as input

Parameters:
  • self (NDFrameT) –

  • axis1 (Union[str, int]) –

  • axis2 (Union[str, int]) –

  • copy (bool) –

swaplevel(i=-2, j=-1, axis=0)

Swap levels i and j in a MultiIndex.

Default is to swap the two innermost levels of the index.

Parameters:
  • i (int or str) – Levels of the indices to be swapped. Can pass level name as string.

  • j (int or str) – Levels of the indices to be swapped. Can pass level name as string.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to swap levels on. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.

Returns:

DataFrame with levels swapped in MultiIndex.

Return type:

DataFrame

Examples

>>> df = pd.DataFrame(
...     {"Grade": ["A", "B", "A", "C"]},
...     index=[
...         ["Final exam", "Final exam", "Coursework", "Coursework"],
...         ["History", "Geography", "History", "Geography"],
...         ["January", "February", "March", "April"],
...     ],
... )
>>> df
                                    Grade
Final exam  History     January      A
            Geography   February     B
Coursework  History     March        A
            Geography   April        C

In the following example, we will swap the levels of the indices. Here, we will swap the levels column-wise, but levels can be swapped row-wise in a similar manner. Note that column-wise is the default behaviour. By not supplying any arguments for i and j, we swap the last and second to last indices.

>>> df.swaplevel()
                                    Grade
Final exam  January     History         A
            February    Geography       B
Coursework  March       History         A
            April       Geography       C

By supplying one argument, we can choose which index to swap the last index with. We can for example swap the first index with the last one as follows.

>>> df.swaplevel(0)
                                    Grade
January     History     Final exam      A
February    Geography   Final exam      B
March       History     Coursework      A
April       Geography   Coursework      C

We can also define explicitly which indices we want to swap by supplying values for both i and j. Here, we for example swap the first and second indices.

>>> df.swaplevel(0, 1)
                                    Grade
History     Final exam  January         A
Geography   Final exam  February        B
History     Coursework  March           A
Geography   Coursework  April           C
tail(n=5)

Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows.

For negative values of n, this function returns all rows except the first |n| rows, equivalent to df[|n|:].

If n is larger than the number of rows, this function returns all rows.

Parameters:
  • n (int, default 5) – Number of rows to select.

  • self (NDFrameT) –

Returns:

The last n rows of the caller object.

Return type:

type of caller

See also

DataFrame.head

The first n rows of the caller object.

Examples

>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
...                    'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df
      animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
5     parrot
6      shark
7      whale
8      zebra

Viewing the last 5 lines

>>> df.tail()
   animal
4  monkey
5  parrot
6   shark
7   whale
8   zebra

Viewing the last n lines (three in this case)

>>> df.tail(3)
  animal
6  shark
7  whale
8  zebra

For negative values of n

>>> df.tail(-3)
   animal
3    lion
4  monkey
5  parrot
6   shark
7   whale
8   zebra
take(indices, axis=0, is_copy=None, **kwargs)

Return the elements in the given positional indices along an axis.

This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object.

Parameters:
  • indices (array-like) – An array of ints indicating which positions to take.

  • axis ({0 or 'index', 1 or 'columns', None}, default 0) – The axis on which to select elements. 0 means that we are selecting rows, 1 means that we are selecting columns. For Series this parameter is unused and defaults to 0.

  • is_copy (bool) –

    Before pandas 1.0, is_copy=False can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0, take always returns a copy, and the keyword is therefore deprecated.

    Deprecated since version 1.0.0.

  • **kwargs – For compatibility with numpy.take(). Has no effect on the output.

  • self (NDFrameT) –

Returns:

taken – An array-like containing the elements taken from the object.

Return type:

same type as caller

See also

DataFrame.loc

Select a subset of a DataFrame by labels.

DataFrame.iloc

Select a subset of a DataFrame by positions.

numpy.take

Take elements from an array along an axis.

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
...                    ('parrot', 'bird', 24.0),
...                    ('lion', 'mammal', 80.5),
...                    ('monkey', 'mammal', np.nan)],
...                   columns=['name', 'class', 'max_speed'],
...                   index=[0, 2, 3, 1])
>>> df
     name   class  max_speed
0  falcon    bird      389.0
2  parrot    bird       24.0
3    lion  mammal       80.5
1  monkey  mammal        NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
     name   class  max_speed
0  falcon    bird      389.0
1  monkey  mammal        NaN

Take elements at indices 1 and 2 along the axis 1 (column selection).

>>> df.take([1, 2], axis=1)
    class  max_speed
0    bird      389.0
2    bird       24.0
3  mammal       80.5
1  mammal        NaN

We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists.

>>> df.take([-1, -2])
     name   class  max_speed
1  monkey  mammal        NaN
3    lion  mammal       80.5
to_clipboard(excel=True, sep=None, **kwargs)

Copy object to the system clipboard.

Write a text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters:
  • excel (bool, default True) –

    Produce output in a csv format for easy pasting into excel.

    • True, use the provided separator for csv pasting.

    • False, write a string representation of the object to the clipboard.

  • sep (str, default '\t') – Field delimiter.

  • **kwargs – These parameters will be passed to DataFrame.to_csv.

Return type:

None

See also

DataFrame.to_csv

Write a DataFrame to a comma-separated values (csv) file.

read_clipboard

Read text from clipboard and pass to read_csv.

Notes

Requirements for your platform.

  • Linux : xclip, or xsel (with PyQt4 modules)

  • Windows : none

  • macOS : none

This method uses the processes developed for the package pyperclip. A solution to render any output string format is given in the examples.

Examples

Copy the contents of a DataFrame to the clipboard.

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
>>> df.to_clipboard(sep=',')  
... # Wrote the following to the system clipboard:
... # ,A,B,C
... # 0,1,2,3
... # 1,4,5,6

We can omit the index by passing the keyword index and setting it to false.

>>> df.to_clipboard(sep=',', index=False)  
... # Wrote the following to the system clipboard:
... # A,B,C
... # 1,2,3
... # 4,5,6

Using the original pyperclip package for any string output format.

import pyperclip
html = df.style.to_html()
pyperclip.copy(html)
to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', lineterminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors='strict', storage_options=None)

Write object to a comma-separated values (csv) file.

Parameters:
  • path_or_buf (str, path object, file-like object, or None, default None) –

    String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline=’’, disabling universal newlines. If a binary file object is passed, mode might need to contain a ‘b’.

    Changed in version 1.2.0: Support for binary file objects was introduced.

  • sep (str, default ',') – String of length 1. Field delimiter for the output file.

  • na_rep (str, default '') – Missing data representation.

  • float_format (str, Callable, default None) – Format string for floating point numbers. If a Callable is given, it takes precedence over other numeric formatting parameters, like decimal.

  • columns (sequence, optional) – Columns to write.

  • header (bool or list of str, default True) – Write out the column names. If a list of strings is given it is assumed to be aliases for the column names.

  • index (bool, default True) – Write row names (index).

  • index_label (str or sequence, or False, default None) – Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.

  • mode (str, default 'w') – Python write mode. The available write modes are the same as open().

  • encoding (str, optional) – A string representing the encoding to use in the output file, defaults to ‘utf-8’. encoding is not supported if path_or_buf is a non-binary file object.

  • compression (str or dict, default 'infer') –

    For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.

    New in version 1.5.0: Added support for .tar files.

    Changed in version 1.0.0: May now be a dict with key ‘method’ as compression mode and other entries as additional compression options if compression mode is ‘zip’.

    Changed in version 1.1.0: Passing compression options as keys in dict is supported for compression modes ‘gzip’, ‘bz2’, ‘zstd’, and ‘zip’.

    Changed in version 1.2.0: Compression is supported for binary file objects.

    Changed in version 1.2.0: Previous versions forwarded dict entries for ‘gzip’ to gzip.open instead of gzip.GzipFile which prevented setting mtime.

  • quoting (optional constant from csv module) – Defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.

  • quotechar (str, default '"') – String of length 1. Character used to quote fields.

  • lineterminator (str, optional) –

    The newline character or character sequence to use in the output file. Defaults to os.linesep, which depends on the OS in which this method is called (’\n’ for linux, ‘\r\n’ for Windows, i.e.).

    Changed in version 1.5.0: Previously was line_terminator, changed for consistency with read_csv and the standard library ‘csv’ module.

  • chunksize (int or None) – Rows to write at a time.

  • date_format (str, default None) – Format string for datetime objects.

  • doublequote (bool, default True) – Control quoting of quotechar inside a field.

  • escapechar (str, default None) – String of length 1. Character used to escape sep and quotechar when appropriate.

  • decimal (str, default '.') – Character recognized as decimal separator. E.g. use ‘,’ for European data.

  • errors (str, default 'strict') –

    Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options.

    New in version 1.1.0.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

Returns:

If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.

Return type:

None or str

See also

read_csv

Load a CSV file into a DataFrame.

to_excel

Write DataFrame to an Excel file.

Examples

>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'],
...                    'mask': ['red', 'purple'],
...                    'weapon': ['sai', 'bo staff']})
>>> df.to_csv(index=False)
'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n'

Create ‘out.zip’ containing ‘out.csv’

>>> compression_opts = dict(method='zip',
...                         archive_name='out.csv')  
>>> df.to_csv('out.zip', index=False,
...           compression=compression_opts)  

To write a csv file to a new folder or nested folder you will first need to create it using either Pathlib or os:

>>> from pathlib import Path  
>>> filepath = Path('folder/subfolder/out.csv')  
>>> filepath.parent.mkdir(parents=True, exist_ok=True)  
>>> df.to_csv(filepath)  
>>> import os  
>>> os.makedirs('folder/subfolder', exist_ok=True)  
>>> df.to_csv('folder/subfolder/out.csv')  
to_dict(orient='dict', into=<class 'dict'>, include_index=False)[source]
Parameters:
  • orient (Literal['dict', 'list', 'series', 'split', 'tight', 'records', 'index']) –

  • into (Type[dict]) –

  • include_index (bool) –

Return type:

Union[dict, List[dict]]

to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=_NoDefault.no_default, inf_rep='inf', verbose=_NoDefault.no_default, freeze_panes=None, storage_options=None)

Write object to an Excel sheet.

To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.

Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.

Parameters:
  • excel_writer (path-like, file-like, or ExcelWriter object) – File path or existing ExcelWriter.

  • sheet_name (str, default 'Sheet1') – Name of sheet which will contain DataFrame.

  • na_rep (str, default '') – Missing data representation.

  • float_format (str, optional) – Format string for floating point numbers. For example float_format="%.2f" will format 0.1234 to 0.12.

  • columns (sequence or list of str, optional) – Columns to write.

  • header (bool or list of str, default True) – Write out the column names. If a list of string is given it is assumed to be aliases for the column names.

  • index (bool, default True) – Write row names (index).

  • index_label (str or sequence, optional) – Column label for index column(s) if desired. If not specified, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

  • startrow (int, default 0) – Upper left cell row to dump data frame.

  • startcol (int, default 0) – Upper left cell column to dump data frame.

  • engine (str, optional) –

    Write engine to use, ‘openpyxl’ or ‘xlsxwriter’. You can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

    Deprecated since version 1.2.0: As the xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas.

  • merge_cells (bool, default True) – Write MultiIndex and Hierarchical Rows as merged cells.

  • encoding (str, optional) –

    Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.

    Deprecated since version 1.5.0: This keyword was not used.

  • inf_rep (str, default 'inf') – Representation for infinity (there is no native representation for infinity in Excel).

  • verbose (bool, default True) –

    Display more information in the error logs.

    Deprecated since version 1.5.0: This keyword was not used.

  • freeze_panes (tuple of int (length 2), optional) – Specifies the one-based bottommost row and rightmost column that is to be frozen.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

Return type:

None

See also

to_csv

Write DataFrame to a comma-separated values (csv) file.

ExcelWriter

Class for writing DataFrame objects into excel sheets.

read_excel

Read an Excel file into a pandas DataFrame.

read_csv

Read a comma-separated values (csv) file into DataFrame.

io.formats.style.Styler.to_excel

Add styles to Excel sheet.

Notes

For compatibility with to_csv(), to_excel serializes lists and dicts to strings before writing.

Once a workbook has been saved it is not possible to write further data without rewriting the whole workbook.

Examples

Create, write to and save a workbook:

>>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
...                    index=['row 1', 'row 2'],
...                    columns=['col 1', 'col 2'])
>>> df1.to_excel("output.xlsx")  

To specify the sheet name:

>>> df1.to_excel("output.xlsx",
...              sheet_name='Sheet_name_1')  

If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object:

>>> df2 = df1.copy()
>>> with pd.ExcelWriter('output.xlsx') as writer:  
...     df1.to_excel(writer, sheet_name='Sheet_name_1')
...     df2.to_excel(writer, sheet_name='Sheet_name_2')

ExcelWriter can also be used to append to an existing Excel file:

>>> with pd.ExcelWriter('output.xlsx',
...                     mode='a') as writer:  
...     df.to_excel(writer, sheet_name='Sheet_name_3')

To set the library that is used to write the Excel file, you can pass the engine keyword (the default engine is automatically chosen depending on the file extension):

>>> df1.to_excel('output1.xlsx', engine='xlsxwriter')  
to_feather(path, **kwargs)

Write a DataFrame to the binary Feather format.

Parameters:
  • path (str, path object, file-like object) – String, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function. If a string or a path, it will be used as Root Directory path when writing a partitioned dataset.

  • **kwargs

    Additional keywords passed to pyarrow.feather.write_feather(). Starting with pyarrow 0.17, this includes the compression, compression_level, chunksize and version keywords.

    New in version 1.1.0.

Return type:

None

Notes

This function writes the dataframe as a feather file. Requires a default index. For saving the DataFrame with your custom index use a method that supports custom indices e.g. to_parquet.

to_gbq(destination_table, project_id=None, chunksize=None, reauth=False, if_exists='fail', auth_local_webserver=True, table_schema=None, location=None, progress_bar=True, credentials=None)

Write a DataFrame to a Google BigQuery table.

This function requires the pandas-gbq package.

See the How to authenticate with Google BigQuery guide for authentication instructions.

Parameters:
  • destination_table (str) – Name of table to be written, in the form dataset.tablename.

  • project_id (str, optional) – Google BigQuery Account project ID. Optional when available from the environment.

  • chunksize (int, optional) – Number of rows to be inserted in each chunk from the dataframe. Set to None to load the whole dataframe at once.

  • reauth (bool, default False) – Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used.

  • if_exists (str, default 'fail') –

    Behavior when the destination table exists. Value can be one of:

    'fail'

    If table exists raise pandas_gbq.gbq.TableCreationError.

    'replace'

    If table exists, drop it, recreate it, and insert data.

    'append'

    If table exists, insert data. Create if does not exist.

  • auth_local_webserver (bool, default True) –

    Use the local webserver flow instead of the console flow when getting user credentials.

    New in version 0.2.0 of pandas-gbq.

    Changed in version 1.5.0: Default value is changed to True. Google has deprecated the auth_local_webserver = False “out of band” (copy-paste) flow.

  • table_schema (list of dicts, optional) –

    List of BigQuery table fields to which according DataFrame columns conform to, e.g. [{'name': 'col1', 'type': 'STRING'},...]. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field.

    New in version 0.3.1 of pandas-gbq.

  • location (str, optional) –

    Location where the load job should run. See the BigQuery locations documentation for a list of available locations. The location must match that of the target dataset.

    New in version 0.5.0 of pandas-gbq.

  • progress_bar (bool, default True) –

    Use the library tqdm to show the progress bar for the upload, chunk by chunk.

    New in version 0.5.0 of pandas-gbq.

  • credentials (google.auth.credentials.Credentials, optional) –

    Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine google.auth.compute_engine.Credentials or Service Account google.oauth2.service_account.Credentials directly.

    New in version 0.8.0 of pandas-gbq.

Return type:

None

See also

pandas_gbq.to_gbq

This function in the pandas-gbq library.

read_gbq

Read a DataFrame from Google BigQuery.

to_hdf(path_or_buf, key, mode='a', complevel=None, complib=None, append=False, format=None, index=True, min_itemsize=None, nan_rep=None, dropna=None, data_columns=None, errors='strict', encoding='UTF-8')

Write the contained data to an HDF5 file using HDFStore.

Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects.

In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key.

Warning

One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing.

For more information see the user guide.

Parameters:
  • path_or_buf (str or pandas.HDFStore) – File path or HDFStore object.

  • key (str) – Identifier for the group in the store.

  • mode ({'a', 'w', 'r+'}, default 'a') –

    Mode to open file:

    • ’w’: write, a new file is created (an existing file with the same name would be deleted).

    • ’a’: append, an existing file is opened for reading and writing, and if the file does not exist it is created.

    • ’r+’: similar to ‘a’, but the file must already exist.

  • complevel ({0-9}, default None) – Specifies a compression level for data. A value of 0 or None disables compression.

  • complib ({'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib') – Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not available issues a ValueError.

  • append (bool, default False) – For Table formats, append the input data to the existing.

  • format ({'fixed', 'table', None}, default 'fixed') –

    Possible values:

    • ’fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable.

    • ’table’: Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.

    • If None, pd.get_option(‘io.hdf.default_format’) is checked, followed by fallback to “fixed”.

  • index (bool, default True) – Write DataFrame index as a column.

  • min_itemsize (dict or int, optional) – Map column names to minimum string sizes for columns.

  • nan_rep (Any, optional) – How to represent null values as str. Not allowed with append=True.

  • dropna (bool, default False, optional) – Remove missing values.

  • data_columns (list of columns or True, optional) – List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See Query via data columns. for more information. Applicable only to format=’table’.

  • errors (str, default 'strict') – Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options.

  • encoding (str, default "UTF-8") –

Return type:

None

See also

read_hdf

Read from HDF file.

DataFrame.to_orc

Write a DataFrame to the binary orc format.

DataFrame.to_parquet

Write a DataFrame to the binary parquet format.

DataFrame.to_sql

Write to a SQL table.

DataFrame.to_feather

Write out feather-format for DataFrames.

DataFrame.to_csv

Write out to a csv file.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
...                   index=['a', 'b', 'c'])  
>>> df.to_hdf('data.h5', key='df', mode='w')  

We can add another object to the same file:

>>> s = pd.Series([1, 2, 3, 4])  
>>> s.to_hdf('data.h5', key='s')  

Reading from HDF file:

>>> pd.read_hdf('data.h5', 'df')  
A  B
a  1  4
b  2  5
c  3  6
>>> pd.read_hdf('data.h5', 's')  
0    1
1    2
2    3
3    4
dtype: int64
to_html(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None)

Render a DataFrame as an HTML table.

Parameters:
  • buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.

  • columns (sequence, optional, default None) – The subset of columns to write. Writes all columns by default.

  • col_space (str or int, list or dict of int or str, optional) –

    The minimum width of each column in CSS length units. An int is assumed to be px units.

    New in version 0.25.0: Ability to use str.

  • header (bool, optional) – Whether to print column labels, default True.

  • index (bool, optional, default True) – Whether to print index (row) labels.

  • na_rep (str, optional, default 'NaN') – String representation of NaN to use.

  • formatters (list, tuple or dict of one-param. functions, optional) – Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.

  • float_format (one-parameter function, optional, default None) –

    Formatter function to apply to columns’ elements if they are floats. This function must return a unicode string and will be applied only to the non-NaN elements, with NaN being handled by na_rep.

    Changed in version 1.2.0.

  • sparsify (bool, optional, default True) – Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.

  • index_names (bool, optional, default True) – Prints the names of the indexes.

  • justify (str, default None) –

    How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are

    • left

    • right

    • center

    • justify

    • justify-all

    • start

    • end

    • inherit

    • match-parent

    • initial

    • unset.

  • max_rows (int, optional) – Maximum number of rows to display in the console.

  • max_cols (int, optional) – Maximum number of columns to display in the console.

  • show_dimensions (bool, default False) – Display DataFrame dimensions (number of rows by number of columns).

  • decimal (str, default '.') – Character recognized as decimal separator, e.g. ‘,’ in Europe.

  • bold_rows (bool, default True) – Make the row labels bold in the output.

  • classes (str or list or tuple, default None) – CSS class(es) to apply to the resulting html table.

  • escape (bool, default True) – Convert the characters <, >, and & to HTML-safe sequences.

  • notebook ({True, False}, default False) – Whether the generated HTML is for IPython Notebook.

  • border (int) – A border=border attribute is included in the opening <table> tag. Default pd.options.display.html.border.

  • table_id (str, optional) – A css id is included in the opening <table> tag if specified.

  • render_links (bool, default False) – Convert URLs to HTML links.

  • encoding (str, default "utf-8") –

    Set character encoding.

    New in version 1.0.

Returns:

If buf is None, returns the result as a string. Otherwise returns None.

Return type:

str or None

See also

to_string

Convert DataFrame to a string.

to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters:
  • path_or_buf (str, path object, file-like object, or None, default None) – String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string.

  • orient (str) –

    Indication of expected JSON string format.

    • Series:

      • default is ‘index’

      • allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}.

    • DataFrame:

      • default is ‘columns’

      • allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.

    • The format of the JSON string:

      • ’split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}

      • ’records’ : list like [{column -> value}, … , {column -> value}]

      • ’index’ : dict like {index -> {column -> value}}

      • ’columns’ : dict like {column -> {index -> value}}

      • ’values’ : just the values array

      • ’table’ : dict like {‘schema’: {schema}, ‘data’: {data}}

      Describing the data, where data component is like orient='records'.

  • date_format ({None, 'epoch', 'iso'}) – Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For orient='table', the default is ‘iso’. For all other orients, the default is ‘epoch’.

  • double_precision (int, default 10) – The number of decimal places to use when encoding floating point values.

  • force_ascii (bool, default True) – Force encoded string to be ASCII.

  • date_unit (str, default 'ms' (milliseconds)) – The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

  • default_handler (callable, default None) – Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

  • lines (bool, default False) – If ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like.

  • compression (str or dict, default 'infer') –

    For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.

    New in version 1.5.0: Added support for .tar files.

    Changed in version 1.4.0: Zstandard support.

  • index (bool, default True) – Whether to include the index values in the JSON string. Not including the index (index=False) is only supported when orient is ‘split’ or ‘table’.

  • indent (int, optional) –

    Length of whitespace used to indent each record.

    New in version 1.0.0.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

Returns:

If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.

Return type:

None or str

See also

read_json

Convert a JSON string to pandas object.

Notes

The behavior of indent=0 varies from the stdlib, which does not indent the output but does insert newlines. Currently, indent=0 and the default indent=None are equivalent in pandas, though this may change in a future release.

orient='table' contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema.

Examples

>>> import json
>>> df = pd.DataFrame(
...     [["a", "b"], ["c", "d"]],
...     index=["row 1", "row 2"],
...     columns=["col 1", "col 2"],
... )
>>> result = df.to_json(orient="split")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "columns": [
        "col 1",
        "col 2"
    ],
    "index": [
        "row 1",
        "row 2"
    ],
    "data": [
        [
            "a",
            "b"
        ],
        [
            "c",
            "d"
        ]
    ]
}

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.

>>> result = df.to_json(orient="records")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
[
    {
        "col 1": "a",
        "col 2": "b"
    },
    {
        "col 1": "c",
        "col 2": "d"
    }
]

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> result = df.to_json(orient="index")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "row 1": {
        "col 1": "a",
        "col 2": "b"
    },
    "row 2": {
        "col 1": "c",
        "col 2": "d"
    }
}

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> result = df.to_json(orient="columns")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "col 1": {
        "row 1": "a",
        "row 2": "c"
    },
    "col 2": {
        "row 1": "b",
        "row 2": "d"
    }
}

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> result = df.to_json(orient="values")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
[
    [
        "a",
        "b"
    ],
    [
        "c",
        "d"
    ]
]

Encoding with Table Schema:

>>> result = df.to_json(orient="table")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "schema": {
        "fields": [
            {
                "name": "index",
                "type": "string"
            },
            {
                "name": "col 1",
                "type": "string"
            },
            {
                "name": "col 2",
                "type": "string"
            }
        ],
        "primaryKey": [
            "index"
        ],
        "pandas_version": "1.4.0"
    },
    "data": [
        {
            "index": "row 1",
            "col 1": "a",
            "col 2": "b"
        },
        {
            "index": "row 2",
            "col 1": "c",
            "col 2": "d"
        }
    ]
}
to_latex(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, position=None)

Render object to a LaTeX tabular, longtable, or nested table.

Requires \usepackage{booktabs}. The output can be copy/pasted into a main LaTeX document or read from an external file with \input{table.tex}.

Changed in version 1.0.0: Added caption and label arguments.

Changed in version 1.2.0: Added position argument, changed meaning of caption argument.

Parameters:
  • buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.

  • columns (list of label, optional) – The subset of columns to write. Writes all columns by default.

  • col_space (int, optional) – The minimum width of each column.

  • header (bool or list of str, default True) – Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.

  • index (bool, default True) – Write row names (index).

  • na_rep (str, default 'NaN') – Missing data representation.

  • formatters (list of functions or dict of {str: function}, optional) – Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns.

  • float_format (one-parameter function or str, optional, default None) – Formatter for floating point numbers. For example float_format="%.2f" and float_format="{:0.2f}".format will both result in 0.1234 being formatted as 0.12.

  • sparsify (bool, optional) – Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module.

  • index_names (bool, default True) – Prints the names of the indexes.

  • bold_rows (bool, default False) – Make the row labels bold in the output.

  • column_format (str, optional) – The columns format as specified in LaTeX table format e.g. ‘rcl’ for 3 columns. By default, ‘l’ will be used for all columns except columns of numbers, which default to ‘r’.

  • longtable (bool, optional) – By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.

  • escape (bool, optional) – By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names.

  • encoding (str, optional) – A string representing the encoding to use in the output file, defaults to ‘utf-8’.

  • decimal (str, default '.') – Character recognized as decimal separator, e.g. ‘,’ in Europe.

  • multicolumn (bool, default True) – Use multicolumn to enhance MultiIndex columns. The default will be read from the config module.

  • multicolumn_format (str, default 'l') – The alignment for multicolumns, similar to column_format The default will be read from the config module.

  • multirow (bool, default False) – Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module.

  • caption (str or tuple, optional) –

    Tuple (full_caption, short_caption), which results in \caption[short_caption]{full_caption}; if a single string is passed, no short caption will be set.

    New in version 1.0.0.

    Changed in version 1.2.0: Optionally allow caption to be a tuple (full_caption, short_caption).

  • label (str, optional) –

    The LaTeX label to be placed inside \label{} in the output. This is used with \ref{} in the main .tex file.

    New in version 1.0.0.

  • position (str, optional) –

    The LaTeX positional argument for tables, to be placed after \begin{} in the output.

    New in version 1.2.0:

    str or None

    If buf is None, returns the result as a string. Otherwise returns None.

Return type:

str | None

See also

io.formats.style.Styler.to_latex

Render a DataFrame to LaTeX with conditional formatting.

DataFrame.to_string

Render a DataFrame to a console-friendly tabular output.

DataFrame.to_html

Render a DataFrame as an HTML table.

Examples

>>> df = pd.DataFrame(dict(name=['Raphael', 'Donatello'],
...                   mask=['red', 'purple'],
...                   weapon=['sai', 'bo staff']))
>>> print(df.to_latex(index=False))  
\begin{tabular}{lll}
 \toprule
       name &    mask &    weapon \\
 \midrule
    Raphael &     red &       sai \\
  Donatello &  purple &  bo staff \\
\bottomrule
\end{tabular}
to_markdown(buf=None, mode='wt', index=True, storage_options=None, **kwargs)

Print DataFrame in Markdown-friendly format.

New in version 1.0.0.

Parameters:
  • buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.

  • mode (str, optional) – Mode in which file is opened, “wt” by default.

  • index (bool, optional, default True) –

    Add index (row) labels.

    New in version 1.1.0.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

  • **kwargs – These parameters will be passed to tabulate.

Returns:

DataFrame in Markdown-friendly format.

Return type:

str

Notes

Requires the tabulate package.

Examples
>>> df = pd.DataFrame(
...     data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]}
... )
>>> print(df.to_markdown())
|    | animal_1   | animal_2   |
|---:|:-----------|:-----------|
|  0 | elk        | dog        |
|  1 | pig        | quetzal    |

Output markdown with a tabulate option.

>>> print(df.to_markdown(tablefmt="grid"))
+----+------------+------------+
|    | animal_1   | animal_2   |
+====+============+============+
|  0 | elk        | dog        |
+----+------------+------------+
|  1 | pig        | quetzal    |
+----+------------+------------+
to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default)

Convert the DataFrame to a NumPy array.

By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are float16 and float32, the results dtype will be float32. This may require copying data and coercing values, which may be expensive.

Parameters:
  • dtype (str or numpy.dtype, optional) – The dtype to pass to numpy.asarray().

  • copy (bool, default False) – Whether to ensure that the returned value is not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary.

  • na_value (Any, optional) –

    The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.

    New in version 1.1.0.

Return type:

numpy.ndarray

See also

Series.to_numpy

Similar method for Series.

Examples

>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
array([[1, 3],
       [2, 4]])

With heterogeneous data, the lowest common type will have to be used.

>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
>>> df.to_numpy()
array([[1. , 3. ],
       [2. , 4.5]])

For a mix of numeric and non-numeric types, the output array will have object dtype.

>>> df['C'] = pd.date_range('2000', periods=2)
>>> df.to_numpy()
array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
       [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
to_orc(path=None, *, engine='pyarrow', index=None, engine_kwargs=None)

Write a DataFrame to the ORC format.

New in version 1.5.0.

Parameters:
  • path (str, file-like object or None, default None) – If a string, it will be used as Root Directory path when writing a partitioned dataset. By file-like object, we refer to objects with a write() method, such as a file handle (e.g. via builtin open function). If path is None, a bytes object is returned.

  • engine (str, default 'pyarrow') – ORC library to use. Pyarrow must be >= 7.0.0.

  • index (bool, optional) – If True, include the dataframe’s index(es) in the file output. If False, they will not be written to the file. If None, similar to infer the dataframe’s index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.

  • engine_kwargs (dict[str, Any] or None, default None) – Additional keyword arguments passed to pyarrow.orc.write_table().

Return type:

bytes if no path argument is provided else None

Raises:
  • NotImplementedError – Dtype of one or more columns is category, unsigned integers, interval, period or sparse.

  • ValueError – engine is not pyarrow.

See also

read_orc

Read a ORC file.

DataFrame.to_parquet

Write a parquet file.

DataFrame.to_csv

Write a csv file.

DataFrame.to_sql

Write to a sql table.

DataFrame.to_hdf

Write to hdf.

Notes

  • Before using this function you should read the user guide about ORC and install optional dependencies.

  • This function requires pyarrow library.

  • For supported dtypes please refer to supported ORC features in Arrow.

  • Currently timezones in datetime columns are not preserved when a dataframe is converted into ORC files.

Examples

>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]})
>>> df.to_orc('df.orc')  
>>> pd.read_orc('df.orc')  
   col1  col2
0     1     4
1     2     3

If you want to get a buffer to the orc content you can write it to io.BytesIO >>> import io >>> b = io.BytesIO(df.to_orc()) # doctest: +SKIP >>> b.seek(0) # doctest: +SKIP 0 >>> content = b.read() # doctest: +SKIP

to_parquet(path=None, engine='auto', compression='snappy', index=None, partition_cols=None, storage_options=None, **kwargs)

Write a DataFrame to the binary parquet format.

This function writes the dataframe as a parquet file. You can choose different parquet backends, and have the option of compression. See the user guide for more details.

Parameters:
  • path (str, path object, file-like object, or None, default None) –

    String, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function. If None, the result is returned as bytes. If a string or path, it will be used as Root Directory path when writing a partitioned dataset.

    Changed in version 1.2.0.

    Previously this was “fname”

  • engine ({'auto', 'pyarrow', 'fastparquet'}, default 'auto') – Parquet library to use. If ‘auto’, then the option io.parquet.engine is used. The default io.parquet.engine behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable.

  • compression ({'snappy', 'gzip', 'brotli', None}, default 'snappy') – Name of the compression to use. Use None for no compression.

  • index (bool, default None) – If True, include the dataframe’s index(es) in the file output. If False, they will not be written to the file. If None, similar to True the dataframe’s index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.

  • partition_cols (list, optional, default None) – Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

  • **kwargs – Additional arguments passed to the parquet library. See pandas io for more details.

Return type:

bytes if no path argument is provided else None

See also

read_parquet

Read a parquet file.

DataFrame.to_orc

Write an orc file.

DataFrame.to_csv

Write a csv file.

DataFrame.to_sql

Write to a sql table.

DataFrame.to_hdf

Write to hdf.

Notes

This function requires either the fastparquet or pyarrow library.

Examples

>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
...               compression='gzip')  
>>> pd.read_parquet('df.parquet.gzip')  
   col1  col2
0     1     3
1     2     4

If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don’t use partition_cols, which creates multiple files.

>>> import io
>>> f = io.BytesIO()
>>> df.to_parquet(f)
>>> f.seek(0)
0
>>> content = f.read()
to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex.

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed).

Parameters:
  • freq (str, default) – Frequency of the PeriodIndex.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to convert (the index by default).

  • copy (bool, default True) – If False then underlying input data is not copied.

Return type:

DataFrame with PeriodIndex

Examples

>>> idx = pd.to_datetime(
...     [
...         "2001-03-31 00:00:00",
...         "2002-05-31 00:00:00",
...         "2003-08-31 00:00:00",
...     ]
... )
>>> idx
DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'],
dtype='datetime64[ns]', freq=None)
>>> idx.to_period("M")
PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]')

For the yearly frequency

>>> idx.to_period("Y")
PeriodIndex(['2001', '2002', '2003'], dtype='period[A-DEC]')
to_pickle(path, compression='infer', protocol=5, storage_options=None)

Pickle (serialize) object to file.

Parameters:
  • path (str, path object, or file-like object) – String, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function. File path where the pickled object will be stored.

  • compression (str or dict, default 'infer') –

    For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.

    New in version 1.5.0: Added support for .tar files.

  • protocol (int) –

    Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4, 5. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

Return type:

None

See also

read_pickle

Load pickled pandas object (or any object) from file.

DataFrame.to_hdf

Write DataFrame to an HDF5 file.

DataFrame.to_sql

Write DataFrame to a SQL database.

DataFrame.to_parquet

Write a DataFrame to the binary parquet format.

Examples

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})  
>>> original_df  
   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9
>>> original_df.to_pickle("./dummy.pkl")  
>>> unpickled_df = pd.read_pickle("./dummy.pkl")  
>>> unpickled_df  
   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9
to_records(index=True, column_dtypes=None, index_dtypes=None)

Convert DataFrame to a NumPy record array.

Index will be included as the first field of the record array if requested.

Parameters:
  • index (bool, default True) – Include index in resulting record array, stored in ‘index’ field or using the index label, if set.

  • column_dtypes (str, type, dict, default None) – If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types.

  • index_dtypes (str, type, dict, default None) –

    If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types.

    This mapping is applied only if index=True.

Returns:

NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries.

Return type:

numpy.recarray

See also

DataFrame.from_records

Convert structured or record ndarray to DataFrame.

numpy.recarray

An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet.

Examples

>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
...                   index=['a', 'b'])
>>> df
   A     B
a  1  0.50
b  2  0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])

If the DataFrame index has no label then the recarray field name is set to ‘index’. If the index has a label then this is used as the field name:

>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])

The index can be excluded from the record array:

>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
          dtype=[('A', '<i8'), ('B', '<f8')])

Data types can be specified for the columns:

>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
          dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])

As well as for the index:

>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
          dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = f"<S{df.index.str.len().max()}"
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
          dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
to_sql(name, con, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None, method=None)

Write records stored in a DataFrame to a SQL database.

Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten.

Parameters:
  • name (str) – Name of SQL table.

  • con (sqlalchemy.engine.(Engine or Connection) or sqlite3.Connection) –

    Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See here.

  • schema (str, optional) – Specify the schema (if database flavor supports this). If None, use default schema.

  • if_exists ({'fail', 'replace', 'append'}, default 'fail') –

    How to behave if the table already exists.

    • fail: Raise a ValueError.

    • replace: Drop the table before inserting new values.

    • append: Insert new values to the existing table.

  • index (bool, default True) – Write DataFrame index as a column. Uses index_label as the column name in the table.

  • index_label (str or sequence, default None) – Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

  • chunksize (int, optional) – Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once.

  • dtype (dict or scalar, optional) – Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns.

  • method ({None, 'multi', callable}, optional) –

    Controls the SQL insertion clause used:

    • None : Uses standard SQL INSERT clause (one per row).

    • ’multi’: Pass multiple values in a single INSERT clause.

    • callable with signature (pd_table, conn, keys, data_iter).

    Details and a sample callable implementation can be found in the section insert method.

Returns:

Number of rows affected by to_sql. None is returned if the callable passed into method does not return an integer number of rows.

The number of returned rows affected is the sum of the rowcount attribute of sqlite3.Cursor or SQLAlchemy connectable which may not reflect the exact number of written rows as stipulated in the sqlite3 or SQLAlchemy.

New in version 1.4.0.

Return type:

None or int

Raises:

ValueError – When the table already exists and if_exists is ‘fail’ (the default).

See also

read_sql

Read a DataFrame from a table.

Notes

Timezone aware datetime columns will be written as Timestamp with timezone type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone.

References

Examples

Create an in-memory SQLite database.

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://', echo=False)

Create a table from scratch with 3 rows.

>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
>>> df
     name
0  User 1
1  User 2
2  User 3
>>> df.to_sql('users', con=engine)
3
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]

An sqlalchemy.engine.Connection can also be passed to con:

>>> with engine.begin() as connection:
...     df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
...     df1.to_sql('users', con=connection, if_exists='append')
2

This is allowed to support operations that require that the same DBAPI connection is used for the entire operation.

>>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']})
>>> df2.to_sql('users', con=engine, if_exists='append')
2
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
 (0, 'User 4'), (1, 'User 5'), (0, 'User 6'),
 (1, 'User 7')]

Overwrite the table with just df2.

>>> df2.to_sql('users', con=engine, if_exists='replace',
...            index_label='id')
2
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 6'), (1, 'User 7')]

Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars.

>>> df = pd.DataFrame({"A": [1, None, 2]})
>>> df
     A
0  1.0
1  NaN
2  2.0
>>> from sqlalchemy.types import Integer
>>> df.to_sql('integers', con=engine, index=False,
...           dtype={"A": Integer()})
3
>>> engine.execute("SELECT * FROM integers").fetchall()
[(1,), (None,), (2,)]
to_stata(path, *, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, compression='infer', storage_options=None, value_labels=None)

Export DataFrame object to Stata dta format.

Writes the DataFrame to a Stata dataset file. “dta” files contain a Stata dataset.

Parameters:
  • path (str, path object, or buffer) –

    String, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function.

    Changed in version 1.0.0.

    Previously this was “fname”

  • convert_dates (dict) – Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information.

  • write_index (bool) – Write the index to Stata dataset.

  • byteorder (str) – Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.

  • time_stamp (datetime) – A datetime to use as file creation date. Default is the current time.

  • data_label (str, optional) – A label for the data set. Must be 80 characters or smaller.

  • variable_labels (dict) – Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.

  • version ({114, 117, 118, 119, None}, default 114) –

    Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables.

    Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read version 119 files.

    Changed in version 1.0.0: Added support for formats 118 and 119.

  • convert_strl (list, optional) – List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated.

  • compression (str or dict, default 'infer') –

    For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.

    New in version 1.5.0: Added support for .tar files.

    New in version 1.1.0.

    Changed in version 1.4.0: Zstandard support.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

    New in version 1.2.0.

  • value_labels (dict of dicts) –

    Dictionary containing columns as keys and dictionaries of column value to labels as values. Labels for a single variable must be 32,000 characters or smaller.

    New in version 1.4.0.

Raises:
  • NotImplementedError

    • If datetimes contain timezone information * Column dtype is not representable in Stata

  • ValueError

    • Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters

Return type:

None

See also

read_stata

Import Stata data files.

io.stata.StataWriter

Low-level writer for Stata data files.

io.stata.StataWriter117

Low-level writer for version 117 files.

Examples

>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
...                               'parrot'],
...                    'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta')  
to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', line_width=None, min_rows=None, max_colwidth=None, encoding=None)

Render a DataFrame to a console-friendly tabular output.

Parameters:
  • buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.

  • columns (sequence, optional, default None) – The subset of columns to write. Writes all columns by default.

  • col_space (int, list or dict of int, optional) – The minimum width of each column. If a list of ints is given every integers corresponds with one column. If a dict is given, the key references the column, while the value defines the space to use..

  • header (bool or sequence of str, optional) – Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.

  • index (bool, optional, default True) – Whether to print index (row) labels.

  • na_rep (str, optional, default 'NaN') – String representation of NaN to use.

  • formatters (list, tuple or dict of one-param. functions, optional) – Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.

  • float_format (one-parameter function, optional, default None) –

    Formatter function to apply to columns’ elements if they are floats. This function must return a unicode string and will be applied only to the non-NaN elements, with NaN being handled by na_rep.

    Changed in version 1.2.0.

  • sparsify (bool, optional, default True) – Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.

  • index_names (bool, optional, default True) – Prints the names of the indexes.

  • justify (str, default None) –

    How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are

    • left

    • right

    • center

    • justify

    • justify-all

    • start

    • end

    • inherit

    • match-parent

    • initial

    • unset.

  • max_rows (int, optional) – Maximum number of rows to display in the console.

  • max_cols (int, optional) – Maximum number of columns to display in the console.

  • show_dimensions (bool, default False) – Display DataFrame dimensions (number of rows by number of columns).

  • decimal (str, default '.') – Character recognized as decimal separator, e.g. ‘,’ in Europe.

  • line_width (int, optional) – Width to wrap a line in characters.

  • min_rows (int, optional) – The number of rows to display in the console in a truncated repr (when number of rows is above max_rows).

  • max_colwidth (int, optional) –

    Max width to truncate each column in characters. By default, no limit.

    New in version 1.0.0.

  • encoding (str, default "utf-8") –

    Set character encoding.

    New in version 1.0.

Returns:

If buf is None, returns the result as a string. Otherwise returns None.

Return type:

str or None

See also

to_html

Convert DataFrame to HTML.

Examples

>>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]}
>>> df = pd.DataFrame(d)
>>> print(df.to_string())
   col1  col2
0     1     4
1     2     5
2     3     6
to_timestamp(freq=None, how='start', axis=0, copy=True)

Cast to DatetimeIndex of timestamps, at beginning of period.

Parameters:
  • freq (str, default frequency of PeriodIndex) – Desired frequency.

  • how ({'s', 'e', 'start', 'end'}) – Convention for converting period to timestamp; start of period vs. end.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to convert (the index by default).

  • copy (bool, default True) – If False then underlying input data is not copied.

Return type:

DataFrame with DatetimeIndex

to_xarray()

Return an xarray object from the pandas object.

Returns:

Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series.

Return type:

xarray.DataArray or xarray.Dataset

See also

DataFrame.to_hdf

Write DataFrame to an HDF5 file.

DataFrame.to_parquet

Write a DataFrame to the binary parquet format.

Notes

See the xarray docs

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2),
...                    ('parrot', 'bird', 24.0, 2),
...                    ('lion', 'mammal', 80.5, 4),
...                    ('monkey', 'mammal', np.nan, 4)],
...                   columns=['name', 'class', 'max_speed',
...                            'num_legs'])
>>> df
     name   class  max_speed  num_legs
0  falcon    bird      389.0         2
1  parrot    bird       24.0         2
2    lion  mammal       80.5         4
3  monkey  mammal        NaN         4
>>> df.to_xarray()
<xarray.Dataset>
Dimensions:    (index: 4)
Coordinates:
  * index      (index) int64 0 1 2 3
Data variables:
    name       (index) object 'falcon' 'parrot' 'lion' 'monkey'
    class      (index) object 'bird' 'bird' 'mammal' 'mammal'
    max_speed  (index) float64 389.0 24.0 80.5 nan
    num_legs   (index) int64 2 2 4 4
>>> df['max_speed'].to_xarray()
<xarray.DataArray 'max_speed' (index: 4)>
array([389. ,  24. ,  80.5,   nan])
Coordinates:
  * index    (index) int64 0 1 2 3
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-01',
...                         '2018-01-02', '2018-01-02'])
>>> df_multiindex = pd.DataFrame({'date': dates,
...                               'animal': ['falcon', 'parrot',
...                                          'falcon', 'parrot'],
...                               'speed': [350, 18, 361, 15]})
>>> df_multiindex = df_multiindex.set_index(['date', 'animal'])
>>> df_multiindex
                   speed
date       animal
2018-01-01 falcon    350
           parrot     18
2018-01-02 falcon    361
           parrot     15
>>> df_multiindex.to_xarray()
<xarray.Dataset>
Dimensions:  (date: 2, animal: 2)
Coordinates:
  * date     (date) datetime64[ns] 2018-01-01 2018-01-02
  * animal   (animal) object 'falcon' 'parrot'
Data variables:
    speed    (date, animal) int64 350 18 361 15
to_xml(path_or_buffer=None, index=True, root_name='data', row_name='row', na_rep=None, attr_cols=None, elem_cols=None, namespaces=None, prefix=None, encoding='utf-8', xml_declaration=True, pretty_print=True, parser='lxml', stylesheet=None, compression='infer', storage_options=None)

Render a DataFrame to an XML document.

New in version 1.3.0.

Parameters:
  • path_or_buffer (str, path object, file-like object, or None, default None) – String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string.

  • index (bool, default True) – Whether to include index in XML document.

  • root_name (str, default 'data') – The name of root element in XML document.

  • row_name (str, default 'row') – The name of row element in XML document.

  • na_rep (str, optional) – Missing data representation.

  • attr_cols (list-like, optional) – List of columns to write as attributes in row element. Hierarchical columns will be flattened with underscore delimiting the different levels.

  • elem_cols (list-like, optional) – List of columns to write as children in row element. By default, all columns output as children of row element. Hierarchical columns will be flattened with underscore delimiting the different levels.

  • namespaces (dict, optional) –

    All namespaces to be defined in root element. Keys of dict should be prefix names and values of dict corresponding URIs. Default namespaces should be given empty string key. For example,

    namespaces = {"": "https://example.com"}
    

  • prefix (str, optional) – Namespace prefix to be used for every element and/or attribute in document. This should be one of the keys in namespaces dict.

  • encoding (str, default 'utf-8') – Encoding of the resulting document.

  • xml_declaration (bool, default True) – Whether to include the XML declaration at start of document.

  • pretty_print (bool, default True) – Whether output should be pretty printed with indentation and line breaks.

  • parser ({'lxml','etree'}, default 'lxml') – Parser module to use for building of tree. Only ‘lxml’ and ‘etree’ are supported. With ‘lxml’, the ability to use XSLT stylesheet is supported.

  • stylesheet (str, path object or file-like object, optional) – A URL, file-like object, or a raw string containing an XSLT script used to transform the raw XML output. Script should use layout of elements and attributes from original output. This argument requires lxml to be installed. Only XSLT 1.0 scripts and not later versions is currently supported.

  • compression (str or dict, default 'infer') –

    For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.

    New in version 1.5.0: Added support for .tar files.

    Changed in version 1.4.0: Zstandard support.

  • storage_options (dict, optional) –

    Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.

Returns:

If io is None, returns the resulting XML format as a string. Otherwise returns None.

Return type:

None or str

See also

to_json

Convert the pandas object to a JSON string.

to_html

Convert DataFrame to a html.

Examples

>>> df = pd.DataFrame({'shape': ['square', 'circle', 'triangle'],
...                    'degrees': [360, 360, 180],
...                    'sides': [4, np.nan, 3]})
>>> df.to_xml()  
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row>
    <index>0</index>
    <shape>square</shape>
    <degrees>360</degrees>
    <sides>4.0</sides>
  </row>
  <row>
    <index>1</index>
    <shape>circle</shape>
    <degrees>360</degrees>
    <sides/>
  </row>
  <row>
    <index>2</index>
    <shape>triangle</shape>
    <degrees>180</degrees>
    <sides>3.0</sides>
  </row>
</data>
>>> df.to_xml(attr_cols=[
...           'index', 'shape', 'degrees', 'sides'
...           ])  
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row index="0" shape="square" degrees="360" sides="4.0"/>
  <row index="1" shape="circle" degrees="360"/>
  <row index="2" shape="triangle" degrees="180" sides="3.0"/>
</data>
>>> df.to_xml(namespaces={"doc": "https://example.com"},
...           prefix="doc")  
<?xml version='1.0' encoding='utf-8'?>
<doc:data xmlns:doc="https://example.com">
  <doc:row>
    <doc:index>0</doc:index>
    <doc:shape>square</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides>4.0</doc:sides>
  </doc:row>
  <doc:row>
    <doc:index>1</doc:index>
    <doc:shape>circle</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides/>
  </doc:row>
  <doc:row>
    <doc:index>2</doc:index>
    <doc:shape>triangle</doc:shape>
    <doc:degrees>180</doc:degrees>
    <doc:sides>3.0</doc:sides>
  </doc:row>
</doc:data>
transform(func, axis=0, *args, **kwargs)

Call func on self producing a DataFrame with the same axis shape as self.

Parameters:
  • func (function, str, list-like or dict-like) –

    Function to use for transforming the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If func is both list-like and dict-like, dict-like behavior takes precedence.

    Accepted combinations are:

    • function

    • string function name

    • list-like of functions and/or function names, e.g. [np.exp, 'sqrt']

    • dict-like of axis labels -> functions, function names or list-like of such.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.

  • *args – Positional arguments to pass to func.

  • **kwargs – Keyword arguments to pass to func.

Returns:

A DataFrame that must have the same length as self.

Return type:

DataFrame

:raises ValueError : If the returned DataFrame has a different length than self.:

See also

DataFrame.agg

Only perform aggregating type operations.

DataFrame.apply

Invoke function on a DataFrame.

Notes

Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See gotchas.udf-mutation for more details.

Examples

>>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)})
>>> df
   A  B
0  0  1
1  1  2
2  2  3
>>> df.transform(lambda x: x + 1)
   A  B
0  1  2
1  2  3
2  3  4

Even though the resulting DataFrame must have the same length as the input DataFrame, it is possible to provide several input functions:

>>> s = pd.Series(range(3))
>>> s
0    0
1    1
2    2
dtype: int64
>>> s.transform([np.sqrt, np.exp])
       sqrt        exp
0  0.000000   1.000000
1  1.000000   2.718282
2  1.414214   7.389056

You can call transform on a GroupBy object:

>>> df = pd.DataFrame({
...     "Date": [
...         "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05",
...         "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"],
...     "Data": [5, 8, 6, 1, 50, 100, 60, 120],
... })
>>> df
         Date  Data
0  2015-05-08     5
1  2015-05-07     8
2  2015-05-06     6
3  2015-05-05     1
4  2015-05-08    50
5  2015-05-07   100
6  2015-05-06    60
7  2015-05-05   120
>>> df.groupby('Date')['Data'].transform('sum')
0     55
1    108
2     66
3    121
4     55
5    108
6     66
7    121
Name: Data, dtype: int64
>>> df = pd.DataFrame({
...     "c": [1, 1, 1, 2, 2, 2, 2],
...     "type": ["m", "n", "o", "m", "m", "n", "n"]
... })
>>> df
   c type
0  1    m
1  1    n
2  1    o
3  2    m
4  2    m
5  2    n
6  2    n
>>> df['size'] = df.groupby('c')['type'].transform(len)
>>> df
   c type size
0  1    m    3
1  1    n    3
2  1    o    3
3  2    m    4
4  2    m    4
5  2    n    4
6  2    n    4
transpose(*args, copy=False)

Transpose index and columns.

Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property T is an accessor to the method transpose().

Parameters:
  • *args (tuple, optional) – Accepted for compatibility with NumPy.

  • copy (bool, default False) –

    Whether to copy the data after transposing, even for DataFrames with a single dtype.

    Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types.

Returns:

The transposed DataFrame.

Return type:

DataFrame

See also

numpy.transpose

Permute the dimensions of a given array.

Notes

Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object dtype. In such a case, a copy of the data is always made.

Examples

Square DataFrame with homogeneous dtype

>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
   col1  col2
0     1     3
1     2     4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
      0  1
col1  1  2
col2  3  4

When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype:

>>> df1.dtypes
col1    int64
col2    int64
dtype: object
>>> df1_transposed.dtypes
0    int64
1    int64
dtype: object

Non-square DataFrame with mixed dtypes

>>> d2 = {'name': ['Alice', 'Bob'],
...       'score': [9.5, 8],
...       'employed': [False, True],
...       'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
    name  score  employed  kids
0  Alice    9.5     False     0
1    Bob    8.0      True     0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
              0     1
name      Alice   Bob
score       9.5   8.0
employed  False  True
kids          0     0

When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:

>>> df2.dtypes
name         object
score       float64
employed       bool
kids          int64
dtype: object
>>> df2_transposed.dtypes
0    object
1    object
dtype: object
truediv(other, axis='columns', level=None, fill_value=None)

Get Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters:
  • other (scalar, sequence, Series, dict or DataFrame) – Any single or multiple element data structure, or list-like object.

  • axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.

  • level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.

  • fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

Returns:

Result of the arithmetic operation.

Return type:

DataFrame

See also

DataFrame.add

Add DataFrames.

DataFrame.sub

Subtract DataFrames.

DataFrame.mul

Multiply DataFrames.

DataFrame.div

Divide DataFrames (float division).

DataFrame.truediv

Divide DataFrames (float division).

DataFrame.floordiv

Divide DataFrames (integer division).

DataFrame.mod

Calculate modulo (remainder after division).

DataFrame.pow

Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361
>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0
>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles      degrees
circle           0          720
triangle             0      360
rectangle            0      720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles      degrees
circle               0        0
triangle             6      360
rectangle           12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4
>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN
>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720
>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0
truncate(before=None, after=None, axis=None, copy=True)

Truncate a Series or DataFrame before and after some index value.

This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Parameters:
  • before (date, str, int) – Truncate all rows before this index value.

  • after (date, str, int) – Truncate all rows after this index value.

  • axis ({0 or 'index', 1 or 'columns'}, optional) – Axis to truncate. Truncates the index (rows) by default. For Series this parameter is unused and defaults to 0.

  • copy (bool, default is True,) – Return a copy of the truncated section.

  • self (NDFrameT) –

Returns:

The truncated Series or DataFrame.

Return type:

type of caller

See also

DataFrame.loc

Select a subset of a DataFrame by label.

DataFrame.iloc

Select a subset of a DataFrame by position.

Notes

If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps.

Examples

>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
...                    'B': ['f', 'g', 'h', 'i', 'j'],
...                    'C': ['k', 'l', 'm', 'n', 'o']},
...                   index=[1, 2, 3, 4, 5])
>>> df
   A  B  C
1  a  f  k
2  b  g  l
3  c  h  m
4  d  i  n
5  e  j  o
>>> df.truncate(before=2, after=4)
   A  B  C
2  b  g  l
3  c  h  m
4  d  i  n

The columns of a DataFrame can be truncated.

>>> df.truncate(before="A", after="B", axis="columns")
   A  B
1  a  f
2  b  g
3  c  h
4  d  i
5  e  j

For Series, only rows can be truncated.

>>> df['A'].truncate(before=2, after=4)
2    b
3    c
4    d
Name: A, dtype: object

The index values in truncate can be datetimes or string dates.

>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()
                     A
2016-01-31 23:59:56  1
2016-01-31 23:59:57  1
2016-01-31 23:59:58  1
2016-01-31 23:59:59  1
2016-02-01 00:00:00  1
>>> df.truncate(before=pd.Timestamp('2016-01-05'),
...             after=pd.Timestamp('2016-01-10')).tail()
                     A
2016-01-09 23:59:56  1
2016-01-09 23:59:57  1
2016-01-09 23:59:58  1
2016-01-09 23:59:59  1
2016-01-10 00:00:00  1

Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings. They will be coerced to Timestamps before truncation.

>>> df.truncate('2016-01-05', '2016-01-10').tail()
                     A
2016-01-09 23:59:56  1
2016-01-09 23:59:57  1
2016-01-09 23:59:58  1
2016-01-09 23:59:59  1
2016-01-10 00:00:00  1

Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates.

>>> df.loc['2016-01-05':'2016-01-10', :].tail()
                     A
2016-01-10 23:59:55  1
2016-01-10 23:59:56  1
2016-01-10 23:59:57  1
2016-01-10 23:59:58  1
2016-01-10 23:59:59  1
static try_remap_col(dataframe, col_mapper, to_orig=False)[source]

Attempts to remap a column in a DataFrame.

Parameters:
  • dataframe (DataFrame) – DataFrame whose column you want to remap

  • col_mapper (ColMap) – column mapper

  • to_orig (bool) – if True, the color mapper will be mapped to the origin mapper instead of new

Returns:

The DataFrame with remapped columns.

Return type:

DataFrame

tshift(periods=1, freq=None, axis=0)

Shift the time index, using the index’s frequency if available.

Deprecated since version 1.1.0: Use shift instead.

Parameters:
  • periods (int) – Number of periods to move, can be positive or negative.

  • freq (DateOffset, timedelta, or str, default None) – Increment to use from the tseries module or time rule expressed as a string (e.g. ‘EOM’).

  • axis ({0 or ‘index’, 1 or ‘columns’, None}, default 0) – Corresponds to the axis that contains the Index. For Series this parameter is unused and defaults to 0.

  • self (NDFrameT) –

Returns:

shifted

Return type:

Series/DataFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

tz_convert(tz, axis=0, level=None, copy=True)

Convert tz-aware axis to target time zone.

Parameters:
  • tz (str or tzinfo object) –

  • axis (the axis to convert) –

  • level (int, str, default None) – If axis is a MultiIndex, convert a specific level. Otherwise must be None.

  • copy (bool, default True) – Also make a copy of the underlying data.

  • self (NDFrameT) –

Returns:

Object with time zone converted axis.

Return type:

Series/DataFrame

Raises:

TypeError – If the axis is tz-naive.

tz_localize(tz, axis=0, level=None, copy=True, ambiguous='raise', nonexistent='raise')

Localize tz-naive index of a Series or DataFrame to target time zone.

This operation localizes the Index. To localize the values in a timezone-naive Series, use Series.dt.tz_localize().

Parameters:
  • tz (str or tzinfo) –

  • axis (the axis to localize) –

  • level (int, str, default None) – If axis ia a MultiIndex, localize a specific level. Otherwise must be None.

  • copy (bool, default True) – Also make a copy of the underlying data.

  • ambiguous ('infer', bool-ndarray, 'NaT', default 'raise') –

    When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled.

    • ’infer’ will attempt to infer fall dst-transition hours based on order

    • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)

    • ’NaT’ will return NaT where there are ambiguous times

    • ’raise’ will raise an AmbiguousTimeError if there are ambiguous times.

  • nonexistent (str, default 'raise') –

    A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are:

    • ’shift_forward’ will shift the nonexistent time forward to the closest existing time

    • ’shift_backward’ will shift the nonexistent time backward to the closest existing time

    • ’NaT’ will return NaT where there are nonexistent times

    • timedelta objects will shift nonexistent times by the timedelta

    • ’raise’ will raise an NonExistentTimeError if there are nonexistent times.

  • self (NDFrameT) –

Returns:

Same type as the input.

Return type:

Series/DataFrame

Raises:

TypeError – If the TimeSeries is tz-aware and tz is not None.

Examples

Localize local times:

>>> s = pd.Series([1],
...               index=pd.DatetimeIndex(['2018-09-15 01:30:00']))
>>> s.tz_localize('CET')
2018-09-15 01:30:00+02:00    1
dtype: int64

Be careful with DST changes. When there is sequential data, pandas can infer the DST time:

>>> s = pd.Series(range(7),
...               index=pd.DatetimeIndex(['2018-10-28 01:30:00',
...                                       '2018-10-28 02:00:00',
...                                       '2018-10-28 02:30:00',
...                                       '2018-10-28 02:00:00',
...                                       '2018-10-28 02:30:00',
...                                       '2018-10-28 03:00:00',
...                                       '2018-10-28 03:30:00']))
>>> s.tz_localize('CET', ambiguous='infer')
2018-10-28 01:30:00+02:00    0
2018-10-28 02:00:00+02:00    1
2018-10-28 02:30:00+02:00    2
2018-10-28 02:00:00+01:00    3
2018-10-28 02:30:00+01:00    4
2018-10-28 03:00:00+01:00    5
2018-10-28 03:30:00+01:00    6
dtype: int64

In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly

>>> s = pd.Series(range(3),
...               index=pd.DatetimeIndex(['2018-10-28 01:20:00',
...                                       '2018-10-28 02:36:00',
...                                       '2018-10-28 03:46:00']))
>>> s.tz_localize('CET', ambiguous=np.array([True, True, False]))
2018-10-28 01:20:00+02:00    0
2018-10-28 02:36:00+02:00    1
2018-10-28 03:46:00+01:00    2
dtype: int64

If the DST transition causes nonexistent times, you can shift these dates forward or backward with a timedelta object or ‘shift_forward’ or ‘shift_backward’.

>>> s = pd.Series(range(2),
...               index=pd.DatetimeIndex(['2015-03-29 02:30:00',
...                                       '2015-03-29 03:30:00']))
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
2015-03-29 03:00:00+02:00    0
2015-03-29 03:30:00+02:00    1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
2015-03-29 01:59:59.999999999+01:00    0
2015-03-29 03:30:00+02:00              1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
2015-03-29 03:30:00+02:00    0
2015-03-29 03:30:00+02:00    1
dtype: int64
static unmap_dataframe_cols(dataframe, col_mappers=())[source]

Unmaps a column in a DataFrame.

Parameters:
  • dataframe (DataFrame) – DataFrame to be unmapped

  • col_mappers (Tuple[ColMap, ...]) – column mapper

Returns:

The DataFrame with unmapped columns.

unstack(level=-1, fill_value=None)

Pivot a level of the (necessarily hierarchical) index labels.

Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.

If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex).

Parameters:
  • level (int, str, or list of these, default -1 (last level)) – Level(s) of index to unstack, can pass level name.

  • fill_value (int, str or dict) – Replace NaN with this value if the unstack produces missing values.

Return type:

Series or DataFrame

See also

DataFrame.pivot

Pivot a table based on column values.

DataFrame.stack

Pivot a level of the column labels (inverse operation from unstack).

Notes

Reference the user guide for more examples.

Examples

>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
...                                    ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one  a   1.0
     b   2.0
two  a   3.0
     b   4.0
dtype: float64
>>> s.unstack(level=-1)
     a   b
one  1.0  2.0
two  3.0  4.0
>>> s.unstack(level=0)
   one  two
a  1.0   3.0
b  2.0   4.0
>>> df = s.unstack(level=0)
>>> df.unstack()
one  a  1.0
     b  2.0
two  a  3.0
     b  4.0
dtype: float64
update(other, join='left', overwrite=True, filter_func=None, errors='ignore')

Modify in place using non-NA values from another DataFrame.

Aligns on indices. There is no return value.

Parameters:
  • other (DataFrame, or object coercible into a DataFrame) – Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame.

  • join ({'left'}, default 'left') – Only left join is implemented, keeping the index and columns of the original object.

  • overwrite (bool, default True) –

    How to handle non-NA values for overlapping keys:

    • True: overwrite original DataFrame’s values with values from other.

    • False: only update values that are NA in the original DataFrame.

  • filter_func (callable(1d-array) -> bool 1d-array, optional) – Can choose to replace values other than NA. Return True for values that should be updated.

  • errors ({'raise', 'ignore'}, default 'ignore') – If ‘raise’, will raise a ValueError if the DataFrame and other both contain non-NA data in the same place.

Returns:

None

Return type:

method directly changes calling object

Raises:
  • ValueError

    • When errors=’raise’ and there’s overlapping non-NA data. * When errors is not either ‘ignore’ or ‘raise’

  • NotImplementedError

    • If join != ‘left’

See also

dict.update

Similar method for dictionaries.

DataFrame.merge

For column(s)-on-column(s) operations.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3],
...                    'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
...                        'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
   A  B
0  1  4
1  2  5
2  3  6

The DataFrame’s length does not increase as a result of the update, only values at matching index/column labels are updated.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
...                    'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
   A  B
0  a  d
1  b  e
2  c  f

For Series, its name attribute must be set.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
...                    'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
   A  B
0  a  d
1  b  y
2  c  e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
...                    'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
   A  B
0  a  x
1  b  d
2  c  e

If other contains NaNs the corresponding values are not updated in the original dataframe.

>>> df = pd.DataFrame({'A': [1, 2, 3],
...                    'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
   A      B
0  1    4.0
1  2  500.0
2  3    6.0
value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True)

Return a Series containing counts of unique rows in the DataFrame.

New in version 1.1.0.

Parameters:
  • subset (list-like, optional) – Columns to use when counting unique combinations.

  • normalize (bool, default False) – Return proportions rather than frequencies.

  • sort (bool, default True) – Sort by frequencies.

  • ascending (bool, default False) – Sort in ascending order.

  • dropna (bool, default True) –

    Don’t include counts of rows that contain NA values.

    New in version 1.3.0.

Return type:

Series

See also

Series.value_counts

Equivalent method on Series.

Notes

The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row.

Examples

>>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6],
...                    'num_wings': [2, 0, 0, 0]},
...                   index=['falcon', 'dog', 'cat', 'ant'])
>>> df
        num_legs  num_wings
falcon         2          2
dog            4          0
cat            4          0
ant            6          0
>>> df.value_counts()
num_legs  num_wings
4         0            2
2         2            1
6         0            1
dtype: int64
>>> df.value_counts(sort=False)
num_legs  num_wings
2         2            1
4         0            2
6         0            1
dtype: int64
>>> df.value_counts(ascending=True)
num_legs  num_wings
2         2            1
6         0            1
4         0            2
dtype: int64
>>> df.value_counts(normalize=True)
num_legs  num_wings
4         0            0.50
2         2            0.25
6         0            0.25
dtype: float64

With dropna set to False we can also count rows with NA values.

>>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'],
...                    'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']})
>>> df
  first_name middle_name
0       John       Smith
1       Anne        <NA>
2       John        <NA>
3       Beth      Louise
>>> df.value_counts()
first_name  middle_name
Beth        Louise         1
John        Smith          1
dtype: int64
>>> df.value_counts(dropna=False)
first_name  middle_name
Anne        NaN            1
Beth        Louise         1
John        Smith          1
            NaN            1
dtype: int64
var(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters:
  • axis ({index (0), columns (1)}) – For Series this parameter is unused and defaults to 0.

  • skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.

  • level (int or level name, default None) –

    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

    Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.

  • ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

  • numeric_only (bool, default None) –

    Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

    Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas.

Return type:

Series or DataFrame (if level specified)

Examples

>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
...                   'age': [21, 25, 62, 43],
...                   'height': [1.61, 1.87, 1.49, 2.01]}
...                  ).set_index('person_id')
>>> df
           age  height
person_id
0           21    1.61
1           25    1.87
2           62    1.49
3           43    2.01
>>> df.var()
age       352.916667
height      0.056367

Alternatively, ddof=0 can be set to normalize by N instead of N-1:

>>> df.var(ddof=0)
age       264.687500
height      0.042275
where(cond, other=_NoDefault.no_default, *, inplace=False, axis=None, level=None, errors='raise', try_cast=_NoDefault.no_default)
Parameters:
  • inplace (bool) –

  • axis (Optional[Union[str, int]]) –

  • level (Hashable) –

  • errors (Union[Literal['ignore', 'raise'], ~typing.Literal[<no_default>]]) –

  • try_cast (Union[bool, Literal[<no_default>]]) –

Return type:

pandas.core.frame.DataFrame | None

xs(key, axis=0, level=None, drop_level=True)

Return cross-section from the Series/DataFrame.

This method takes a key argument to select data at a particular level of a MultiIndex.

Parameters:
  • key (label or tuple of label) – Label contained in the index, or partially in a MultiIndex.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis to retrieve cross-section on.

  • level (object, defaults to first n levels (n=1 or len(key))) – In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

  • drop_level (bool, default True) – If False, returns object with same levels as self.

  • self (NDFrameT) –

Returns:

Cross-section from the original Series or DataFrame corresponding to the selected index levels.

Return type:

Series or DataFrame

See also

DataFrame.loc

Access a group of rows and columns by label(s) or a boolean array.

DataFrame.iloc

Purely integer-location based indexing for selection by position.

Notes

xs can not be used to set values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see MultiIndex Slicers.

Examples

>>> d = {'num_legs': [4, 4, 2, 2],
...      'num_wings': [0, 0, 2, 2],
...      'class': ['mammal', 'mammal', 'mammal', 'bird'],
...      'animal': ['cat', 'dog', 'bat', 'penguin'],
...      'locomotion': ['walks', 'walks', 'flies', 'walks']}
>>> df = pd.DataFrame(data=d)
>>> df = df.set_index(['class', 'animal', 'locomotion'])
>>> df
                           num_legs  num_wings
class  animal  locomotion
mammal cat     walks              4          0
       dog     walks              4          0
       bat     flies              2          2
bird   penguin walks              2          2

Get values at specified index

>>> df.xs('mammal')
                   num_legs  num_wings
animal locomotion
cat    walks              4          0
dog    walks              4          0
bat    flies              2          2

Get values at several indexes

>>> df.xs(('mammal', 'dog'))
            num_legs  num_wings
locomotion
walks              4          0

Get values at specified index and level

>>> df.xs('cat', level=1)
                   num_legs  num_wings
class  locomotion
mammal walks              4          0

Get values at several indexes and levels

>>> df.xs(('bird', 'walks'),
...       level=[0, 'locomotion'])
         num_legs  num_wings
animal
penguin         2          2

Get values at specified column and axis

>>> df.xs('num_wings', axis=1)
class   animal   locomotion
mammal  cat      walks         0
        dog      walks         0
        bat      flies         2
bird    penguin  walks         2
Name: num_wings, dtype: int64

Attribute Details

T
_AXIS_LEN: int = 2
_AXIS_NAMES

Deprecated since version 1.1.0.

_AXIS_NUMBERS

Deprecated since version 1.1.0.

_AXIS_ORDERS: list[str] = ['index', 'columns']
_AXIS_TO_AXIS_NUMBER: dict[Axis, int] = {0: 0, 'index': 0, 'rows': 0, 1: 1, 'columns': 1}
_HANDLED_TYPES = (<class 'pandas.core.series.Series'>, <class 'pandas.core.indexes.base.Index'>, <class 'pandas.core.arrays.base.ExtensionArray'>, <class 'numpy.ndarray'>)
_accessors: set[str] = {'sparse'}
_agg_examples_doc = '\nExamples\n--------\n>>> df = pd.DataFrame([[1, 2, 3],\n...                    [4, 5, 6],\n...                    [7, 8, 9],\n...                    [np.nan, np.nan, np.nan]],\n...                   columns=[\'A\', \'B\', \'C\'])\n\nAggregate these functions over the rows.\n\n>>> df.agg([\'sum\', \'min\'])\n        A     B     C\nsum  12.0  15.0  18.0\nmin   1.0   2.0   3.0\n\nDifferent aggregations per column.\n\n>>> df.agg({\'A\' : [\'sum\', \'min\'], \'B\' : [\'min\', \'max\']})\n        A    B\nsum  12.0  NaN\nmin   1.0  2.0\nmax   NaN  8.0\n\nAggregate different functions over the columns and rename the index of the resulting\nDataFrame.\n\n>>> df.agg(x=(\'A\', max), y=(\'B\', \'min\'), z=(\'C\', np.mean))\n     A    B    C\nx  7.0  NaN  NaN\ny  NaN  2.0  NaN\nz  NaN  NaN  6.0\n\nAggregate over the columns.\n\n>>> df.agg("mean", axis="columns")\n0    2.0\n1    5.0\n2    8.0\n3    NaN\ndtype: float64\n'
_agg_summary_and_see_also_doc = '\nThe aggregation operations are always performed over an axis, either the\nindex (default) or the column axis. This behavior is different from\n`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,\n`var`), where the default is to compute the aggregation of the flattened\narray, e.g., ``numpy.mean(arr_2d)`` as opposed to\n``numpy.mean(arr_2d, axis=0)``.\n\n`agg` is an alias for `aggregate`. Use the alias.\n\nSee Also\n--------\nDataFrame.apply : Perform any type of operations.\nDataFrame.transform : Perform transformation type operations.\ncore.groupby.GroupBy : Perform operations over groups.\ncore.resample.Resampler : Perform operations over resampled bins.\ncore.window.Rolling : Perform operations over rolling window.\ncore.window.Expanding : Perform operations over expanding window.\ncore.window.ExponentialMovingWindow : Perform operation over exponential weighted\n    window.\n'
_can_fast_transpose

Can we transpose this DataFrame without creating any new array objects.

_constructor
_data
_hidden_attrs: frozenset[str] = frozenset({'_AXIS_NAMES', '_AXIS_NUMBERS', 'get_values', 'tshift'})
_info_axis
_info_axis_name: str = 'columns'
_info_axis_number: int = 1
_internal_names: list[str] = ['_mgr', '_cacher', '_item_cache', '_cache', '_is_copy', '_subtyp', '_name', '_default_kind', '_default_fill_value', '_metadata', '__array_struct__', '__array_interface__', '_flags']
_internal_names_set: set[str] = {'__array_interface__', '__array_struct__', '_cache', '_cacher', '_default_fill_value', '_default_kind', '_flags', '_is_copy', '_item_cache', '_metadata', '_mgr', '_name', '_subtyp', 'columns', 'index'}
_is_copy: weakref.ReferenceType[NDFrame] | None = None
_is_homogeneous_type

Whether all the columns in a DataFrame have the same type.

Return type:

bool

See also

Index._is_homogeneous_type

Whether the object has a single dtype.

MultiIndex._is_homogeneous_type

Whether all the levels of a MultiIndex have the same dtype.

Examples

>>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type
True
>>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type
False

Items with the same type but different sizes are considered different types.

>>> DataFrame({
...    "A": np.array([1, 2], dtype=np.int32),
...    "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type
False
_is_mixed_type
_is_view

Return boolean indicating if self is view of another array

_metadata: list[str] = []
_series
_stat_axis
_stat_axis_name = 'index'
_stat_axis_number = 0
_typ: str = 'dataframe'
_values

Analogue to ._values that may return a 2D ExtensionArray.

at

Access a single value for a row/column label pair.

Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single value in a DataFrame or Series.

Raises:
  • KeyError

    • If getting a value and ‘label’ does not exist in a DataFrame or Series.

  • ValueError

    • If row/column label pair is not a tuple or if any label from the pair is not a scalar for DataFrame. * If label is list-like (excluding NamedTuple) for Series.

See also

DataFrame.at

Access a single value for a row/column pair by label.

DataFrame.iat

Access a single value for a row/column pair by integer position.

DataFrame.loc

Access a group of rows and columns by label(s).

DataFrame.iloc

Access a group of rows and columns by integer position(s).

Series.at

Access a single value by label.

Series.iat

Access a single value by integer position.

Series.loc

Access a group of rows by label(s).

Series.iloc

Access a group of rows by integer position(s).

Notes

See Fast scalar value getting and setting for more details.

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
...                   index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df
    A   B   C
4   0   2   3
5   0   4   1
6  10  20  30

Get value at specified row/column pair

>>> df.at[4, 'B']
2

Set value at specified row/column pair

>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10

Get value within a Series

>>> df.loc[5].at['B']
4
attrs

Dictionary of global attributes of this dataset.

Warning

attrs is experimental and may change without warning.

See also

DataFrame.flags

Global flags applying to this object.

axes

Return a list representing the axes of the DataFrame.

It has the row axis labels and column axis labels as the only members. They are returned in that order.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.axes
[RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'],
dtype='object')]
columns

The column labels of the DataFrame.

data

Returns the DataFrame with columns mapped to the new names.

dtypes

Return the dtypes in the DataFrame.

This returns a Series with the data type of each column. The result’s index is the original DataFrame’s columns. Columns with mixed types are stored with the object dtype. See the User Guide for more.

Returns:

The data type of each column.

Return type:

pandas.Series

Examples

>>> df = pd.DataFrame({'float': [1.0],
...                    'int': [1],
...                    'datetime': [pd.Timestamp('20180310')],
...                    'string': ['foo']})
>>> df.dtypes
float              float64
int                  int64
datetime    datetime64[ns]
string              object
dtype: object
empty

Indicator whether Series/DataFrame is empty.

True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.

Returns:

If Series/DataFrame is empty, return True, if not return False.

Return type:

bool

See also

Series.dropna

Return series without null values.

DataFrame.dropna

Return DataFrame with labels on given axis omitted where (all or any) data are missing.

Notes

If Series/DataFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:

>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df
    A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True
>>> ser_empty = pd.Series({'A' : []})
>>> ser_empty
A    []
dtype: object
>>> ser_empty.empty
False
>>> ser_empty = pd.Series()
>>> ser_empty.empty
True
flags

Get the properties associated with this pandas object.

The available flags are

  • Flags.allows_duplicate_labels

See also

Flags

Flags that apply to pandas objects.

DataFrame.attrs

Global metadata applying to this dataset.

Notes

“Flags” differ from “metadata”. Flags reflect properties of the pandas object (the Series or DataFrame). Metadata refer to properties of the dataset, and should be stored in DataFrame.attrs.

Examples

>>> df = pd.DataFrame({"A": [1, 2]})
>>> df.flags
<Flags(allows_duplicate_labels=True)>

Flags can be get or set using .

>>> df.flags.allows_duplicate_labels
True
>>> df.flags.allows_duplicate_labels = False

Or by slicing with a key

>>> df.flags["allows_duplicate_labels"]
False
>>> df.flags["allows_duplicate_labels"] = True
iat

Access a single value for a row/column pair by integer position.

Similar to iloc, in that both provide integer-based lookups. Use iat if you only need to get or set a single value in a DataFrame or Series.

Raises:

IndexError – When integer position is out of bounds.

See also

DataFrame.at

Access a single value for a row/column label pair.

DataFrame.loc

Access a group of rows and columns by label(s).

DataFrame.iloc

Access a group of rows and columns by integer position(s).

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
...                   columns=['A', 'B', 'C'])
>>> df
    A   B   C
0   0   2   3
1   0   4   1
2  10  20  30

Get value at specified row/column pair

>>> df.iat[1, 2]
1

Set value at specified row/column pair

>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10

Get value within a series

>>> df.loc[0].iat[1]
2
iloc

Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

  • An integer, e.g. 5.

  • A list or array of integers, e.g. [4, 3, 0].

  • A slice object with ints, e.g. 1:7.

  • A boolean array.

  • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.

  • A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1).

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position.

See also

DataFrame.iat

Fast integer location scalar accessor.

DataFrame.loc

Purely label-location based indexer for selection by label.

Series.iloc

Purely integer-location based indexing for selection by position.

Examples

>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
...           {'a': 100, 'b': 200, 'c': 300, 'd': 400},
...           {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
>>> df = pd.DataFrame(mydict)
>>> df
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

Indexing just the rows

With a scalar integer.

>>> type(df.iloc[0])
<class 'pandas.core.series.Series'>
>>> df.iloc[0]
a    1
b    2
c    3
d    4
Name: 0, dtype: int64

With a list of integers.

>>> df.iloc[[0]]
   a  b  c  d
0  1  2  3  4
>>> type(df.iloc[[0]])
<class 'pandas.core.frame.DataFrame'>
>>> df.iloc[[0, 1]]
     a    b    c    d
0    1    2    3    4
1  100  200  300  400

With a slice object.

>>> df.iloc[:3]
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

With a boolean mask the same length as the index.

>>> df.iloc[[True, False, True]]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

With a callable, useful in method chains. The x passed to the lambda is the DataFrame being sliced. This selects the rows whose index label even.

>>> df.iloc[lambda x: x.index % 2 == 0]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

Indexing both axes

You can mix the indexer types for the index and columns. Use : to select the entire axis.

With scalar integers.

>>> df.iloc[0, 1]
2

With lists of integers.

>>> df.iloc[[0, 2], [1, 3]]
      b     d
0     2     4
2  2000  4000

With slice objects.

>>> df.iloc[1:3, 0:3]
      a     b     c
1   100   200   300
2  1000  2000  3000

With a boolean array whose length matches the columns.

>>> df.iloc[:, [True, False, True, False]]
      a     c
0     1     3
1   100   300
2  1000  3000

With a callable function that expects the Series or DataFrame.

>>> df.iloc[:, lambda df: [0, 2]]
      a     c
0     1     3
1   100   300
2  1000  3000
index

The index (row labels) of the DataFrame.

loc

Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

  • A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

  • A list or array of labels, e.g. ['a', 'b', 'c'].

  • A slice object with labels, e.g. 'a':'f'.

    Warning

    Note that contrary to usual python slices, both the start and the stop are included

  • A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

  • An alignable boolean Series. The index of the key will be aligned before masking.

  • An alignable Index. The Index of the returned selection will be the input.

  • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)

See more at Selection by Label.

Raises:
  • KeyError – If any items are not found.

  • IndexingError – If an indexed key is passed and its index is unalignable to the frame index.

See also

DataFrame.at

Access a single value for a row/column label pair.

DataFrame.iloc

Access group of rows and columns by integer position(s).

DataFrame.xs

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.

Series.loc

Access group of values using labels.

Examples

Getting values

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=['cobra', 'viper', 'sidewinder'],
...      columns=['max_speed', 'shield'])
>>> df
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed    4
shield       5
Name: viper, dtype: int64

List of labels. Note using [[]] returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
            max_speed  shield
viper               4       5
sidewinder          7       8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra    1
viper    4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
            max_speed  shield
sidewinder          7       8

Alignable boolean Series:

>>> df.loc[pd.Series([False, True, False],
...        index=['viper', 'sidewinder', 'cobra'])]
            max_speed  shield
sidewinder          7       8

Index (same behavior as df.reindex)

>>> df.loc[pd.Index(["cobra", "viper"], name="foo")]
       max_speed  shield
foo
cobra          1       2
viper          4       5

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
            max_speed  shield
sidewinder          7       8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
            max_speed
sidewinder          7

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
            max_speed  shield
sidewinder          7       8

Setting values

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df
            max_speed  shield
cobra               1       2
viper               4      50
sidewinder          7      50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df
            max_speed  shield
cobra              10      10
viper               4      50
sidewinder          7      50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df
            max_speed  shield
cobra              30      10
viper              30      50
sidewinder         30      50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df
            max_speed  shield
cobra              30      10
viper               0       0
sidewinder          0       0

Getting values on a DataFrame with an index that has integer labels

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df
   max_speed  shield
7          1       2
8          4       5
9          7       8

Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included.

>>> df.loc[7:9]
   max_speed  shield
7          1       2
8          4       5
9          7       8

Getting values with a MultiIndex

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
...    ('cobra', 'mark i'), ('cobra', 'mark ii'),
...    ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
...    ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
...         [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
         max_speed  shield
mark i          12       2
mark ii          0       4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed    0
shield       4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed    12
shield        2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using [[]] returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
               max_speed  shield
cobra mark ii          0       4

Single tuple for the index with a single label for the column

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
                    max_speed  shield
cobra      mark i          12       2
           mark ii          0       4
sidewinder mark i          10      20
           mark ii          1       4
viper      mark ii          7       1

Please see the user guide for more details and explanations of advanced indexing.

name

Get the name assigned to this dataframe.

ndim

Return an int representing the number of axes / array dimensions.

Return 1 if Series. Otherwise return 2 if DataFrame.

See also

ndarray.ndim

Number of array dimensions.

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.ndim
1
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.ndim
2
orig_data

Returns the original DataFrame remapping columns to the original names.

shape

Return a tuple representing the dimensionality of the DataFrame.

See also

ndarray.shape

Tuple of array dimensions.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.shape
(2, 2)
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4],
...                    'col3': [5, 6]})
>>> df.shape
(2, 3)
size

Return an int representing the number of elements in this object.

Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.

See also

ndarray.size

Number of elements in the array.

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.size
4
style

Returns a Styler object.

Contains methods for building a styled HTML representation of the DataFrame.

See also

io.formats.style.Styler

Helps style a DataFrame or Series according to the data with HTML and CSS.

values

Return a Numpy representation of the DataFrame.

Warning

We recommend using DataFrame.to_numpy() instead.

Only the values in the DataFrame will be returned, the axes labels will be removed.

Returns:

The values of the DataFrame.

Return type:

numpy.ndarray

See also

DataFrame.to_numpy

Recommended alternative to this method.

DataFrame.index

Retrieve the index labels.

DataFrame.columns

Retrieving the column names.

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type() convention, mixing int64 and uint64 will result in a float64 dtype.

Examples

A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.

>>> df = pd.DataFrame({'age':    [ 3,  29],
...                    'height': [94, 170],
...                    'weight': [31, 115]})
>>> df
   age  height  weight
0    3      94      31
1   29     170     115
>>> df.dtypes
age       int64
height    int64
weight    int64
dtype: object
>>> df.values
array([[  3,  94,  31],
       [ 29, 170, 115]])

A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object).

>>> df2 = pd.DataFrame([('parrot',   24.0, 'second'),
...                     ('lion',     80.5, 1),
...                     ('monkey', np.nan, None)],
...                   columns=('name', 'max_speed', 'rank'))
>>> df2.dtypes
name          object
max_speed    float64
rank          object
dtype: object
>>> df2.values
array([['parrot', 24.0, 'second'],
       ['lion', 80.5, 1],
       ['monkey', nan, None]], dtype=object)
_mgr: BlockManager | ArrayManager
_attrs: dict[Hashable, Any]
_cache: dict[str, Any]